
Morphology control is an important issue in the field of polyolefins as well as  
catalyst development. New generations of supported catalysts often show  
complex fragmentation behaviour. Ideally, with stable skin formation, one  
polymer particle results from one catalyst particle. However, a combination of  
thermal and growth / mechanical stress can lead to so called particle  
disintegration (“external fragmentation”) – the particle cracks into a number  
of smaller particles that polymerize and grow, leading to smaller than expected  
polymer grains which are referred to as “fines”. Generation of fines has been 
a major problem in olefin (ethylene) polymerizations for a long time now.  
Production of fines in industrial processes leads to a multitude of problems like  
– wall sheeting, bad heat transfer characteristics, non-homogeneous  
polymerization, off-spec products, disturbances in downstream processes, and  
so on and so forth. 

The main objective of this thesis was to develop a semi-quantitative method for 
characterization of fines generation in ethylene polymerization using MgCl2 -  
supported Ziegler-Natta catalysts based on a detailed analysis of the  
polymerization kinetics, molecular weight, crystallinity, particle growth and  
particle size distribution, pre-polymerization and catalyst pretreatment and  
their individual and combined impact on internal and external fragmentation. 
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Abstract

Abstract

Morphology control is an important issue in the field of polyolefins as well as catalyst

development. New generations of supported catalysts often show complex fragmentation

behaviour. A single catalyst particle (catalyst on support) is composed of many micro-grains

that are packed together. During the first seconds of polymerization, the monomer diffuses

through the porous catalyst, leading to the production of polymer, which simultaneously fills

up the catalyst pores. This occurs up to a critical degree after which the particle cracks into

several sub-grains. Concurrently, a polymer skin also grows around the catalyst particle, and

this skin holds the sub-grains together. Ideally, with stable skin formation, one polymer

particle results from one catalyst particle. However, a combination of thermal and growth /

mechanical stress can lead to so called particle disintegration (“external fragmentation”) – the

particle cracks into a number of smaller particles that polymerize and grow, leading to smaller

than expected polymer grains (fines). “Fines” in general refer to an arbitrary fraction of

particles that are far below the average expected particle size distribution.

Generation of fines has been a major problem in olefin (ethylene) polymerizations for a long

time now. Production of fines in industrial processes leads to a multitude of problems like –

wall sheeting of reactor walls leading to bad heat transfer characteristics; lumping and

sometimes clogging of FBR’s due to excessive accumulation of fines within the FBR thus

disturbing particle fluidization, circulation and withdrawal; non-homogeneous polymerization

leading to off-spec products; wall sheeting and clogging in downstream processes, like heat

exchangers, compressors, etc. Hence, elimination / reduction of fines has been an important

area of focus in industry.

The main objective of this thesis was to develop a semi-quantitative method for

characterization of fines generation in ethylene polymerization using MgCl2 - supported

Ziegler-Natta catalysts based on a detailed analysis of the polymerization kinetics, molecular

weight, crystallinity, particle growth and particle size distribution, pre-polymerization and

catalyst pretreatment and their individual and combined impact on internal and external

fragmentation. The polymerization rate profiles (reflect the growth stress developing within a

growing polymer particle), crystallinity (is an indirect measure of the brittleness of the

produced polymer), particle size distribution (gives a direct measure of the particle

disintegration) and molecular weight (MW) of the produced polymer (determines the intrinsic

viscosity of the polymer matrix) were used as a measure to quantify and understand the degree,

extent and mechanism of particle disintegration during polymerization.



Abstract

In this work we have developed a comprehensive semi-quantitative theory (GRAF-S:

Growth Rate Accelerated Fragmentation – taking into account the role of the outer

polymer Skin) for fines generation that clearly illustrates the underlying processes and their

influences on the properties of the produced polymer and consequently on the final

morphology of the particle during polymerization. The GRAF-S theory contributes deeply to

a more complete understanding of different mechanisms in play, taking into account many

factors (individual and combined) and the key influence of the role of the outer polymer skin,

during polymerization.
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Chapter 1: Introduction

1.1 History of Polyethylene

2008 was the 75th anniversary of the discovery of polyethylene (PE), the world's most

produced polymer, by ICI chemists Reginald Gibson and Eric Fawcett. Gibson and Fawcett

had begun their laboratory experiments to generate PE on Friday March 24, 1933 and returned

to their laboratory on Monday March 27 to find a waxy polymerized substance lining their 18

millimeter high pressure reactor vessel. The chemists had difficulty in replicating the

experiment which was subsequently shelved-partly on safety grounds-until 1935 (Chemweek

March 27, 2008). It was then that a separate team of ICI chemists (Perrin) with access to safer

high pressure equipment then managed replicate the initial experiment and polymerized

ethylene at very high pressure into a semi-crystalline polyethylene. This discovery at the ICI

laboratories led to the commercialization of low-density polyethylene in 1938. Low density

polyethylene is produced in supercritical ethylene at high pressure (600 till 3500 bar) and high

temperature (200 till 350°C). This radical polymerization leads to a highly branched

polyethylene[1].

In 1950 Hogan and Banks, at the Phillips Petroleum Company, discovered that highly

crystalline polyethylene could be produced at moderate temperature (70°C-100°C) and

pressure (30-40 bars) using a chromium oxide catalyst supported on silica. This later came to

be known as the Phillips catalyst[1].

It was in 1953, at the Max Planck Institute in Mülheim, that Karl Ziegler discovered that

semi-crystalline polyethylene (with high crystallinity) could be synthesized under very mild

conditions, atmospheric pressures and temperatures ranging between 50°C-100°C. Ziegler

used a binary mixture of Titanium chloride in combination with alkyl derivative of aluminium

as the catalyst. Polyethylene with varying densities (880 to 960 kg/m3) can be produced with

this Ziegler catalyst; from high-density polyethylene till linear low-density polyethylene.

The first low pressure catalytic process was developed and commercialized by Hoechst A.G.

using a slurry process in a CSTR during the late 1950’s in Frankfurt, Germany. The activity of
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Ziegler’s catalyst was so low that the catalyst compounds had to be removed from the

polyethylene. This additional step was an issue and was overcome in 1978 with the gas-phase

Unipol process developed in 1978, using Ziegler-Natta catalysts1 (supported on MgCl2) with

higher productivities. The productivity was so high that catalyst removal from the polymer

was not required anymore[2].

Since then, phenomenal progress has occurred in the development of catalysts, improvements

in product properties as well as the process, leading to many diverse commercial technologies

being developed by different companies globally for the manufacture of polyethylene. These

technologies can be broadly classified into three basic groups depending on the process

conditions. They are: a) Solution process, b) Slurry processes, and c) gas-phase processes. In

recent years, hybrids and combinations of the three processes have been used widely used in

industry to produce a wide range of PE products and cater to the needs of the growing market.

1.2 Market and Outlook

The chemical industry currently produces about 70 million m.t./year of PE, a figure which is

forecast to rise to about 100 million m.t./year in 2011 (Chemweek March 27, 2008). High

density polyethylene (HDPE) accounts for nearly one half of the global polyethylene (PE)

market (ICIS Sep 26, 2008). Its main outlet is in blow-molded products such as milk bottles,

packaging containers, drums, car fuel tanks, toys and house wares. Film and sheet are widely

used in wrapping, refuse sacks, carrier bags and industrial liners. Injection molded products

include crates, pallets, packaging containers, house wares and toys. Extrusion grades are used

in pipes, conduit, wire coating and cable insulation. Low density polyethylene (LDPE) is used

mainly as a packaging film, either on its own or blended with linear low density polyethylene

(LLDPE) to improve mechanical properties. Blown LDPE film has good processability and

can be used in food and medical/pharmaceutical packaging in high purity grades, as well as in

agricultural film and disposal nappies. LDPE is also used in sheathing for cables, the

extrusion coating of paper and boards for liquids packaging, and in moisture barrier

applications (ICIS Feb 12, 2007).

The key players globally in the PE industry are LyondellBasell, Borealis, Ineos Polyolefins,

SABIC Europe, CPChem, and Dow Chemical company to name a few. Global demand for

HDPE has been down off-late largely due to the sluggish housing and infrastructure market

1 An in-depth overview of the development of Ziegler-Natta catalysts is best described by Bohm et al[2]
and

Kashiwa et al[3]
.
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and the financial crisis. However, producers estimate future demand growth at 3% per year in

Europe and new HDPE capacities, particularly bi-modal PE plants, are coming online in the

Mideast in the next five years. The growth of the LDPE market in Western Europe as forecast

by Nexant ChemSystems is found to be essentially flat, at 0.4% per year, over the next five

years. However, new capacity additions in Middle east and Asia are expected to rise in the

next 5 years.

The latest trends in the industry are tailor made polymers. Superior polymer properties can be

obtained by manipulating kinetics with process conditions in single reactors with different

reaction zones[4] or using two different catalysts on one support, Univation. Improving

polymer properties by manipulating kinetics can only be successful if the dependencies of

polymer properties on required process conditions are known. Despite all research, only few

academic research groups were able to provide information about reproducible and reliable

polymerization kinetics at industrial conditions or properties of polymers produced under

industrial conditions. Fines generation and morphology control have been a major issue in

olefin (ethylene) polymerizations for a long time now with newer generations of supported

catalysts often showing higher activities and complex fragmentation behaviour. During the

last 4 years we have obtained a deeper insight and understanding of the mechanism of fines

generation and the underlying factors that influence it with the GRAF[5] and the GRAF-S (this

work, Growth Rate Accelerated Fragmentation, taking into account the important role of the

outer polymer Skin) theories that have been simultaneously developed in our group. The

following section proceeds on to discuss the objectives and the outline of this work.

1.3 Outline of this Thesis

The main objective of this thesis is to develop a quantitative method for characterization of

fines generation in ethylene polymerization2 using supported Ziegler-Natta catalysts based on

a detailed analysis of:

 Polymerization rate profiles

 Molecular weight

 Crystallinity

 Particle growth and particle size distribution

 Pre-polymerization and Catalyst pretreatment

and their impact on

 Internal and external fragmentation3

2 main focus on slurry polymerization, but gas phase polymerization effects are taken into account
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A systematic study has been carried out in this thesis to segregate the individual influences, by

judiciously varying the following reaction parameters;

- temperature, monomer (ethylene in this case) pressure, hydrogen pressure, co-catalyst

concentration, pre-polymerization conditions,

and monitoring their influence on the particle size distribution of the polymer produced. The

kinetics of polymerization has been used as a measure to reflect the growth stress developed

during polymerization. Crystallinity of the produced polymer has been used to relate to the

brittleness of the system (the more crystalline the polymer, the more brittle it is). The lower

the molecular weight (which is essentially controlled by hydrogen and temperature) the faster

is the in-situ polymer crystallization. Furthermore, the impact of swelling of the amorphous

polymer by slurryfying agents, i.e. n-hexane in this case, and . ethylene , as well as sorption of

these components within the porous, growing particle has been considered. Another

important factor is the “skin formation”. Without a skin around the particle that keeps the

fragmented particle together, the particle would disintegrate under the influence of the growth

stress – this can be quantified with PSD measurements.

The normalized particle size distribution has been used as a good measure to evaluate the

extent of particle fragmentation during slurry ethylene polymerizations. Pre-polymerization

and catalyst pre-treatment has been used in certain cases, to demonstrate the importance of

early stage fragmentation of the morphology and particle size of the final polymer. It is

obvious that the interaction between stress by particle growth and particle brittleness must be

time dependent, because both major variables change dramatically during the course of

polymerization.

This project has been funded entirely by the Dutch Polymer Institute (DPI) and all

experimental work has been carried out at the high-pressure lab, University of Twente. The

presented work has been completed in co-operation with Borealis Polymers Oy, Finland. A

semi-quantitative theory has been developed to establish various factors that influence fines

generation in ethylene polymerizations. The support of PRT GmbH for this work is also

deeply appreciated.

Chapter 2 gives a basic introduction to fines generation and its drawback to the industry. It

describes the various plausible explanations’ for this process and also states the methods

employed by industry to counter the same. Currently, fines generation and agglomeration of

particles (sheeting, lump formation) are major problems in almost all PO processes – and the

3 „internal“ stands for fragmentation without fines formation, the number of particles does not change
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fundamentals of these phenomena are not well understood. It further proceeds on to discuss

the “Our Theory” and the basis for this study.

Chapter 3 discusses the experimental setup with its features. The reproducibility of the

kinetics, and subsequent methods for characterization and analyzing of the polymer produced

have been dealt with in greater detail.

Chapter 4 discusses the influence of monomer pressure and the resulting growth stress on the

polymerization kinetics and particle disintegration respectively.

Chapter 5 discusses the influence of pre-contacting the catalyst with TEA as co-catalyst as

well as the influence of its concentration on the polymerization kinetics as well as on the

particle size distribution.

Chapter 6 discusses the influence of hydrogen on the kinetics as well as the particle size

distribution in ethylene polymerizations. Hydrogen decreases the chain length of the polymer

produced – this leads to faster crystallization and higher brittleness. It also explains some of

the observed peculiarities in ethylene polymerizations.

Chapter 7 deals with the importance of the pre-polymerization step and its influence on fines

generation / production. In the absence of the outer skin, the micro-grains within a single

catalyst particle would continue to polymerize independently leading to the production of only

fines. This effect has been illustrated using the so-called 1-hexene effect. It further discusses

the interesting issue of agglomerate formation from fines in this system.

Chapter 8 discusses the influence of temperature on all relevant parameters including the

visco-elastic behaviour of the polymer matrix and its subsequent influence on particle

disintegration.

Chapter 9 lists the learning from this study and gives future recommendations for further

research in this field.

Appendix-1 – It includes a brief description of a method to measure the critical mechanical

stress / energy required to fracture a particle, when a polymer particle of mass ‘m’ is

accelerated with a velocity ‘v’ on to a hard flat surface (Stainless steel).

Appendix -2 – It gives a very brief overview of the major work that has been done in

literature, regarding local particle overheating, heat and mass transfer effects in olefin

polymerizations.
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Chapter 2: Mechanistic Understanding of Fines Generation

Abstract – Fines generation is a very complex issue that has always been a major industrial

problem. Although a lot of research has been done to understand the mechanism of fines

generation, a comprehensive theory has not yet been postulated. An effort has been made in

this thesis, based on a state-of-the-art evaluation presented in this chapter, to study and

understand the mechanism and underlying influences that lead to fines generation in ethylene

polymerizations.

2.1 Introduction

Morphology control is an important issue in the field of polyolefins as well as catalyst

development. New generations of supported catalysts often show complex fragmentation

behaviour. A single catalyst particle (catalyst on support) is composed of many micro-grains

that are packed together. During the first seconds of polymerization, the monomer diffuses

through the porous catalyst, leading to the production of polymer, which simultaneously fills

up the catalyst pores. This occurs up to a critical degree after which the particle cracks into

several sub-grains. Concurrently, a polymer skin also grows around the catalyst particle, and

this skin holds the sub-grains together[1]. Ideally, with stable skin formation, one polymer

particle results from one catalyst particle. However, a combination of thermal and growth /

mechanical stress can lead to so called particle disintegration (“external fragmentation”) – the

particle cracks into a number of smaller particles that polymerize and grow, leading to smaller

than expected polymer grains (fines). “Fines” in general refer to an arbitrary fraction of

particles that are far below the average expected particle size distribution. Under special

conditions, without skin formation, one can fragment the catalyst support easily by the growth

stress down to primary crystal size of the carrier (MgCl2).

2.2 Fines – A problem to industry

Fines generation has been a major problem in olefin (ethylene) polymerizations for a long

time now. Fines production / elimination / reduction are important issues for most industrial

processes. Although fines production is perceived to be predominantly a problem for gas
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phase processes, it is also a concern for slurry and liquid pool1 processes. There are huge

differences between slurry and gas phase processes per se (heat balance of the polymerising

particles are extremely different, sorption within the polymer and bulk monomer

concentrations in the slurry are higher than in gas phase, crystallisation kinetics could be very

different in each case, and so on and so forth.)2. However, the mechanism of external

fragmentation must be the same in both cases, only the conditions for the fragmentation are

extremely different.

In addition, many processes involve a first stage polymerization in slurry / loop, followed by a

final stage polymerization in fluidised bed reactors. Production of fines during the slurry /

loop would cause severe problems during the subsequent gas phase fluidisation and in almost

all downstream operations including polymer processing (wall sheeting, electrostatics,

entrainment, low product bulk density, etc.)

Conventional fluidised bed reactors used in industry consist of a cylindrical shaped fluidised

bed section, which sometimes extends into an enlarged conical disengaging section at the top

(Figure 1). The catalyst or pre-polymer is fed above the gas distribution plate and monomer is

fed from the bottom at a certain gas velocity to enable fluidisation of the bed. Polymerization

starts instantaneously leading to final polymer particles the diameter of which depends on the

individual residence time of the particle. During the course of polymerization, polymer

particles are projected upwards into the disengaging section through the flowing gas. Most of

these particles fall back into the fluidised bed, by gravity (gas velocities above the bed are

always lower). However, some of the particles, which are extremely fine and light are

elutriated out and do not return to the fluidised bed3. These particles, “fines”, either

accumulate in the disengaging section or leave the reactor along with the flowing gas through

the reactor outlet. This holds true especially for highly active small particles (catalyst particles

with low individual residence time) and can cause operational problems within the reactor

(fluidised bed) or in other downstream processes like the piping, heat exchangers,

compressors and the gas distribution grid. In addition, the more the fines, the bigger the size

of the disengaging section required, and hence higher the investment costs.

1 polymerization of liquid propylene; often carried out in loop reactors
2 see thesis of Majid Daftaribesheli, University of Twente[2]

3 in some processes, fines from the cyclone are recycled into the FBR, see below - in case of non-active fines this
can lead to another problem: fines enrichment in the FBR
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Figure 1: A conventional fluidised bed used in olefin polymerizations.

Within the fluidised bed section, fines accumulate and are considered the major reason for

wall sheeting in reactors. Fines tend to accumulate along the reactor wall in the fluidisation

zone, due to electrostatic forces caused by their high surface area to mass ratio. Along the

reactor wall, the accumulated fine particles continue to polymerise independently and

exothermally leading to melting and fusing of polymer particles into sheets along the reactor

wall. These initial sheets continue to grow, forming layers on the reactor wall. Sometimes,

over time, such layers accumulate and become thick and heavy enough (“lump formation”) to

drop off the walls and into the fluidised bed due to their own weight, leading to problems with

particle fluidisation, circulation and withdrawal. In some cases, if the sheets are large enough,

they may significantly disturb the normal fluidisation (clogging the gas distribution plate) and

the circulation of gas and solids of the entire fluid bed leading to extensive fusing of the main

bed and subsequent reactor shutdown and stoppage in production. This is an extremely costly

and time-consuming operation and preventing this would result in significant savings for the

industry.

Fines have a tendency to accumulate in regions of lower gas velocities. The sloping reactor

wall in the disengaging section above the fluidising bed section provides such a region of

lower gas velocity. Big particles are not present and cannot remove adhesive fines from the

wall. If the fines accumulate along these sloping walls in the disengaging section, the
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polymerization heat load along the sloped wall would increase substantially with time leading

to melting and fusing of the particles into sheets along the wall. This wall sheeting leads to the

same operational problems as explained above.

In addition to the problems caused within the fluidised bed reactors, fines exiting the

disengaging section with the recycle gas pose other problems to downstream processes. They

could attach to surfaces of piping, heat exchangers, compressors, bottom of the reactor, and

gas distribution grid creating sheets and lumps of polymer. Such sheets reduce the heat

transfer efficiency of the heat exchangers, and reduce the flow of recycle gas and over time if

left unnoticed may lead to clogging of pipes and subsequent shut down of the reactor.

Fines production has serious ramifications in slurry / loop ethylene polymerization processes

too. Wall sheeting is one major concern, leading to higher required heating capacities or

blockades and subsequent higher operational costs. Therefore, prevention of fines formation is

a major issue in olefin polymerization technology. This prevention needs understanding of the

fines formation mechanisms.

2.3 Industrial Strategies for prevention / control of fines

Industry has long been dealing with the issue of fines and over the years has developed many

strategies to counter it. Industrial strategies for countering fines are based on three major

principles:

1. Engineering the catalyst

The particle size distribution (PSD) of the final polymer depends on the PSD of the catalyst,

the RTD (i.e. residence time distribution) of the reactor system, and the fragmentation

behaviour (of the catalyst / support) it exhibits during polymerization. Engineering the

catalyst includes optimising activity / performance of the catalyst, identifying the best support

(morphology, mechanical strength, porosity) for the catalyst system, supporting techniques,

PSD of the final catalyst and the corresponding activities it displays during polymerization[3,4].

Changing or modifying the catalyst system affects the properties of the produced polymer (as

molecular weight, molecular weight distribution, co-monomer composition, incorporation and

distribution) and the polymerization process parameters since the catalyst’s response to

hydrogen, co-monomer, temperature and pressure is highly influenced by the type of catalyst
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used. Furthermore, the individual residence time of the particle, characterized by the “RTD”

of the reactor, must have a dominating impact on its fragmentation behaviour. In this work, all

experiments are carried out in batch mode, therefore, all particles show the same “residence

time” – this way we exclude the influence of the RTD. However, the RTD influence could be

important if one wants to upscale the results of this work. In this case continuous (mini) plants

are required to generate reliable data for fines generation studies.

2. Engineering solutions

Engineering solutions mainly refer to reduction in fines generation by implementing

modifications in process equipment. Painter et al[5] (1995) disclosed a strategy for fines

reduction by modifying the circulation pattern in the disengaging section. Generating a

tangential gas or gas-solids flow in the expanded disengaging section of a gas phase fluidised

bed reactor, would reduce fines entrainment in the gas-recycle system and minimises solids

build-up on the inner surface of the disengaging section.

The usage of cyclones is another strategy that as been successfully implemented in industrial

FBRs. Cyclones are used to separate active fines from the outlet gas stream. The active fines

are returned back into the FBR by ejectors[6]. Other improvements include, coating of the

inner surfaces of heat exchanger tubes to reduce adhesion of fines on to their surface,

preventing sheeting and the eventual clogging of the heat exchanger tubes[7]. Additionally

several improvements have been proposed to minimise the accumulation of fines below the

gas distribution grid[8,9]. In some cases, sound waves have been used in a direction tangential

to the reactor surface to reduce surface adhesion of fines due to electrostatics[10]. Chemicals

have also been added to the fluidising section to reduce surface adhesion of fines to the

reactor wall[11].

3. Process solutions

These refer to modifications in process steps, for example, performing a pre-polymerization

before main polymerization. Several examples could be found in literature, see for

instance[12,13]. It is well known in industry that pre-polymerization helps in greatly reducing

fines production in main polymerization. However, the conditions for pre-polymerization are

important. Most industrial processes include a first stage pre-polymerization step followed by

subsequent main polymerization.
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Other process solutions include the controlled addition of hydrocarbons[14] (that are inert to

the polymerization reaction) to the fluidising bed and maintaining the ratio of the dew point

pressure to the total reactor gas pressure between 0.4 and 0.99. Addition of hydrocarbons

would reduce local overheating, which is one of the major reasons for fines generation. This

happens for example in condensed mode operation. The major target of condensed mode is a

higher production rate.

The catalyst system could also be pre-treated or pre-contacted with hydrocarbons (low

boiling) before they are charged into the FBR (“wetting the catalyst”). Wetting the catalyst

reduces local particle overheating significantly, with the low boiling hydrocarbon absorbing

the heat of vaporisation and boiling off during the most critical stage in the life of growing

particles. Other studies include continuously, monitoring and controlling the instantaneous

properties (mechanical, physical and dielectric) of the reacting particles[15].

2.4 Current understanding of fines formation

Different hypotheses have been put forth to explain the mechanism and formation of fines in

ethylene polymerizations, such as:

 Undesirable external fragmentation of the catalyst / support / pre-polymer, occurring due

to the high stresses (hydraulic and thermal) generated within the matrix (pre-polymer /

polymer / catalyst matrix) in the first seconds of polymerization. This varies between

different catalysts depending on the type of support, mechanical strength of the support,

catalyst loading (distribution and concentration), particle size distribution (broad /

narrow), porosity, functional species, kinetic behaviour (activation / deactivation profile,

activation time, peak activity), etc.

 the non-uniformly distributed intra-particle polymerization rate[16] (caused by diffusion

resistance and site heterogeneity).

 Temperature and concentration gradients within a particle leading to resistances in

inter/intra particle heat and mass transfer, and subsequent overheating / deactivation of the

active sites.

 Residence time distribution of the particle within the reactor, with non-uniform residence

time distributions (segregation in FBR) leading to non-uniform particle size distributions

 Faulty / insufficient reactor design leading to local hot spots or dead zones where

monomer concentration is substantially higher than the common bulk
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 Impurities in the feedstock could lead to deactivation / poisoning of some of the active

sites leading to slower / no polymerization and non-uniform particle size distribution

 Fluctuations or gradients in local conditions would influence the physical / instantaneous

mechanical properties of the polymer (crystallinity, sorption, etc.) leading to fines

production. Banat et al[17] observed that performing polymerizations at lower temperatures

led to a substantial increase in fines production.

Progressive sections and chapters of this thesis would help in establishing the fact that “the

mechanism of Fines Generation depends on the stresses generated within the matrix

(supported catalyst / pre-polymer / polymer) and the brittleness of the system (both the

parameters are non-uniformly distributed within a given particle and are changing with time).
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2.5 Fines Generation: Working Hypothesis – (GRAF-S)

The following hypothesis for our theory GRAF-S (Growth Rate Accelerated Fragmentation,

taking into account the important role of the outer polymer Skin), contains both the state of

the art[2] and conclusions from the experiments done in this work.

The major influences on fines generation are:

1. intra-particle stress, with the components

a. particle growth stress by polymer production within a solid particle taking into

account radial concentration and temperature profiles; due to the exothermic

reaction, this internal stress is always joined by thermal stress – the latter

depends on the particle heat balance,

b. mechanical/external stress

i. during catalyst preparation

ii. during catalyst injection

iii. by stirring and particle flow

iv. during gas-solid separation between reactors etc.

2. particle brittleness / fragility, with the components

a. brittleness of the support

b. brittleness of the polymer formed4

3. the outer “skin” formation during the early stage (low yield) polymerization

4. solubility of a certain part of the polymer in slurry polymerizations

5. “homogeneous” polymerization (in slurry processes) of non-supported parts of the

catalyst

For a given supported catalyst, brittleness and stress are distributed parameters, which depend

on many variables during the polymerization process. Fragmentation occurs where high stress

and high brittleness come together at given local positions within a particle. Clearly, these

properties

- depend on particle size,

- depend on the radial position5 within the particle,

- can vary from particle to particle within a given size fraction,

4 a highly crystalline polyethylene is more fragile than an amorphous one
5 especially the formation of a solid skin on the outer surface of a growing particle is of importance



Chapter 2 15

Homogeneous polymerization in slurry processes - caused by “leaching”, for example -leads

to extremely fine polymer particles with subsequent fusion on surfaces (reactor wall =>

“sheeting”); or with other particles in the neighbourhood. The investigation of homogeneous

polymerization is out of the scope of the project presented here. Our focus is on all factors that

are changing stress and brittleness. In the following section, we shall briefly discuss the major

influences (stress and brittleness) in detail.

2.5.1 Stress

The stress consists of two components as stated above. The polymer growth stress within a

growing polymer particle (along with the thermal stress, due to local particle overheating) and

mechanical or external stresses caused by a number of factors. We shall deal with each of

these components individually in the following sub-sections.

1. Growth Stress

The first few seconds of polymerization are extremely critical for morphology control in

heterogeneous olefin polymerization. It is in these first seconds, that the first polymer skin is

formed around the catalyst particle. The monomer also diffuses into the catalyst particle and

into its pores, where it encounters more active sites leading to polymerization in the pores. As

the reaction proceeds, the polymer begins to fill the pores of the catalyst support, while

simultaneously, the skin continues to grow on the outer side of the catalyst particle. The

filling of the pores with polymer, occurs to a certain critical degree, and during this process, it

exerts a pressure on the outer skin of the particle. Once the filling crosses the critical degree, it

leads to fragmentation of the particle into several sub-grains that continue to polymerise. If

the skin is thick enough, it will hold these sub-grains together preventing particle

fragmentation and hence, fines generation. The local stress depends on the local reaction rate

and the local matrix resistance. The higher the reaction rate, the higher would be the growth

stress leading to a higher degree of fragmentation and smaller particles, thus leading to fines

generation (if the particle is brittle enough, see below).
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Figure 2: Schematic of stress generation and skin growth within a growing polymer particle
over time: (a) Skin growth/thickness is faster than stress generation; (b) with the internal
stress being much higher leading to disintegration of particle (case1) and during pre-pol
conditions (case2).

Figure 2 represents the importance of both the internal stress and skin growth as a function of

the particle diameter during polymerization. The following can be inferred from Figure 2:

Case (a): if the rate of skin growth is faster and strong enough to resist the internal

stress generated due to polymerization, one can expect the skin to hold the growing

macro-particles together thus preventing particle disintegration.

Case (b): when the internal stress generated is very high during the first seconds of

polymerisation much higher than the initial rate of skin growth, it would lead to

disintegration of the particle thus leading to production of fines as represented by (1).

However, by controlling this initial high stress by polymerizing under mild conditions

(pre-polymerization) one can expect to avoid fines generation (2).

It must also be noted that local overheating – in gas phase - often leads to softening of the

polymer matrix that is swollen with gases and liquids under pressure. This can contribute to

lesser fines formation[3] and even agglomeration is possible. Clearly, the effect of thermal

stress also depends on the thermal response of the material - catalyst / support / polymer

(>90% MgCl2 at the beginning of polymerization, but nearly 100% partially crystallized

polymer at the end of the polymerization process).

Growth stress and its distribution across the particle, cannot be measured quantitatively – we

need to rely on indirect observations, like for instance, polymerization rate, to judge growth

stress. The rate of increase of the polymerization rate over unit time directly correlates to the

particle growth rate and hence the average stress generated within it. This is always combined
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with thermal stress during the exothermic reaction and cannot be separated from the same.

Performing experiments in slurry, however, minimises the local over heating due to higher

heat transfer coefficients in slurry as compared to gas phase polymerization. Therefore, it is a

wise strategy (for studying fines generation) to start with slurry polymerizations.

The growth stress also depends on the activation state of the catalyst (active sites), especially

in slurry polymerizations with highly active catalyst systems. If the catalyst is pre-activated

with co-catalyst, it would tend to display a faster activation profile than one, which is pre-

activated in-situ during polymerization. This initial faster activation, would lead to a higher

growth stress in the first seconds of polymerization, and hence undesired particle

fragmentation and eventual fines production. However, this depends on pre-contacting time,

monomer/ co-monomer concentrations and temperature.

2. External or Mechanical Stress

External or mechanical stresses include all physical or external forces influencing

fragmentation or disintegration of a particle (polymer / catalyst / support), during any of

following stages of a polymerization process.

 Catalyst preparation

Handling of catalysts in a process is extremely important. The significance of catalyst

preparation is paramount, especially in the polyolefin industry, as even small traces of

impurities could lead to deactivation of catalysts. This step is also the first source of

problems with respect to fines production. Ideally, the catalyst / support should be

such that, during polymerization, it is fragile enough to break into individual sub-

grains that continue to polymerise into bigger particles, but strong enough not to

disintegrate completely into very small sub-grains, leading to the production of fines.

However, shearing of the catalyst / support, by stirring for instance (as is done in some

industrial slurry processes), could lead to undesired fragmentation of the catalyst /

support. The undesired fragmented catalyst particles would polymerise independently

during subsequent polymerization leading to the production of polymer particles with

smaller than expected particle size distributions (fines). In addition, fragmentation of

the catalyst / support, could also influence the kinetics of the catalyst and its

performance (activity) during polymerization (higher surface area / unit volume),

leading to higher than expected growth stresses. This could lead to an increase in fines

production.
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 Catalyst injection

In most processes, the catalyst is prepared elsewhere and transported to the reactor

through pipes, before it is injected into the reactor. During transportation in the pipes,

flow stress induced, especially in pipe bends and near the pipe walls, would lead to

undesirable catalyst fragmentation. In addition, catalyst impinging on the reactor walls

at high velocities during injection (especially, if the catalyst support is fragile) would

lead to undesirable fragmentation of the catalyst / support and eventual fines

generation during subsequent polymerization as explained above. This could be an

extremely critical criterion for fines production, especially in gas phase processes, and

in processes where the catalyst in injected into the reactor at higher pressures using

nitrogen or monomer.

 Stirring and particle flow

During polymerization, particle fragmentation / breakage due to mechanical stresses

can occur due to stirring (due to high shear stresses) and during particle flow through

pipes, cyclones, etc. (due to the particles impinging on the walls of the pipes or

cyclones at high velocities). Fragmentation could also occur due to wall friction and

inter-particular friction, especially in gas phase polymerizations.

 Gas-solid separation between reactors etc.

In some processes, the polymer particles are flashed from high pressures to low

pressures before subsequent polymerization in fluidised bed reactors. During such

operations, particle velocities could be greater than 50m/s, and particles impinging on

the hard surfaces of the walls at such high velocities would tend to fragment and thus

lead to fines production in the process, especially if the particle crystallinity is high.

As explained above, the stress is mainly due to high physical forces on the particle (supported

catalyst / polymer), due to any of the above reasons, causing fracture in the particle and thus

fragmenting it. We have developed a method to measure the critical mechanical stress /

kinetic energy required to break a polymer particle. It is dealt with briefly in Appendix 1.
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2.5.2 Brittleness

The distribution of brittleness across the particle cannot be measured, especially under

polymerization conditions. We simplify the modelling problem by taking the crystallinity of a

polymer sample as measure for the averaged brittleness – averaged over all existing particle

size fractions and averaged over the radius of a single particle. The more crystalline the

polymer, the more brittle one would expect it to be and the greater would be its tendency to

break into smaller particles / fines. We come back to this working hypothesis under

“quantitative results” below. Lower fines formation at increasing temperature, see Banat et

al[3,17], can be explained with decreasing brittleness of the polymer. The averaged brittleness

can be characterized by measuring the critical mechanical stress that leads to disintegration of

a given particle (mass m, velocity v) when it crashes at a vertical wall, see Appendix 1.

2.5.3 Low Yield Polymerizations and the importance of the outer “Skin”

At the beginning, the brittleness of a given ZN catalyst is determined by the brittleness of

MgCl2, because it forms the continuous phase with the TiCl4 distributed within. At yields

larger than 1g polymer/g-catalyst, the polymer becomes the continuous phase and

consequently the brittleness of the particle is increasingly determined by the polymer

properties.

Figure 3: Schematic showing the phase inversion in a highly active Ziegler-Natta catalyst on
a MgCl2 support

A catalyst under industrial conditions, showing a polymerization rate of 36 kg polymer / g-cat

hr would reach the critical phase inversion yield of 1g polymer / g-cat within 0.1 second, see

Figure 3. During this 0.1 second, a dramatic change of both stress and brittleness (and their

distributions) occurs accompanied by quickly changing particle composition in the sequence
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This is overlapped by a simultaneous polymer skin formation at the outer surface of the

particle – along with a temperature rise caused by the exothermic polymerization and the in-

situ swelling and crystallization behaviour of the polymer formed.

All these fast and hard-to-control processes can be delayed to a large extent, by slowing down

the polymerization rate by some orders of magnitude. This can be achieved by operating at

low temperatures and/or low monomer concentrations within a so-called pre-polymerization.

However, it should be clear that all these processes remain complex. For instance, even at

drastically decreased polymerization rates, the optimum conditions for a pre-polymerization

must be found. In such a scenario, fragmentation depends more on the stress tolerance of the

catalyst / support. If enough polymer is produced, so as to form a thick skin around the

particle, then this particle would continue to grow bigger in the main polymerization without

fines formation. If the catalyst support is brittle enough, then the particle tends to crack up

even at such low yields during pre-polymerization, leading to production of smaller particles

(fines generation) in main polymerization. These fines could also fuse with bigger particles

leading to agglomeration.

The importance of the polymer skin can also be investigated under low yield conditions (low

growth stress) if the polymer formed is soluble in the solvent used. This is the case, for

example, for 1-hexene polymerization in hexane slurry[1]. In absence of the fragment-covering

polymer skin, the growth stress can lead to complete disintegration of the catalyst and nearly

100% fines can be formed by means of this kind of pre-polymerization. Similarly, the role of

mass transfer limitations is to be taken into account. At low-rate conditions, the influence of

mass transfer is also low and the critical brittleness can be reached before a fragment-covering

skin is strong enough too keep all parts together, and disintegration would take place. Mass

transfer limitation of the monomer will lead to a maldistribution of the growth stress[18].

A pre-polymerization step implies higher investment and operational costs in industry. Driven

by economic needs, pre-polymerization yields in industry are seldom higher than 500g

polymer/g-cat and most of the polymer is formed during the main polymerization under high-

rate conditions.
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2.6 Basis for Experimental Design

Taking into account all the above influences, an experimental program was designed, to

segregate key variables (while keeping all others constant) and studying their influence /

impact on fines generation in slurry ethylene polymerizations. The following rationale was

used in designing the experiments

Monomer pressure

The monomer pressure directly relates to the rate of polymerization. Higher polymerization

rate causes higher growth stress. Depending on mass transfer limitations and uneven active

site distribution, the growth stress is different at different positions.

Hydrogen influence

The higher the hydrogen-to-monomer ratio, the lower is the molecular weight of the PE

formed. Low molecular weight (shorter chains) PE crystallizes faster and hence would tend to

be more brittle. In addition, the shorter chains also lead to the reduction in the micro-viscosity

of the polymer matrix, thus enabling a higher sorption and diffusion (of both monomer and

hydrogen) locally within a polymer particle.

Effect of co-catalyst

High co-catalyst concentrations lead to increased external fragmentation with certain highly

active catalysts. Higher co-catalyst concentrations can lead to higher polymerization rates, and

consequently an increased growth stress. The higher growth stress consequently leads to an

increase in crack generation (micro-cracks) within the growing polymer particle and thus

promoting a faster back diffusion of monomer and co-catalyst despite the convective polymer

flow leading to dilution of the same.

Effect of pre-polymerizations

Pre-polymerization refers to polymerization under “mild conditions” (lower temperature /

monomer pressure) thus leading to a lower build-up of growth stresses during the early stages

of polymerization. However, the kind of pre-polymerization determines the final particle

morphology – for instance, removal of the outer polymer skin, by performing a pre-

polymerization step would lead to the generation of mostly fines during main slurry

homopolymerization.
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Effect of reaction temperature

With changing temperature the following parameters are changing:

- polymerization rate

- molecular weight of the polymer produced

- monomer / hexane sorption in the polymer

- all material and transport properties

(For instance, with increasing temperature the local micro-viscosity within

a particle decreases, thus enabling a higher mobility of freshly formed

polymer chains).

On a macro-scale, the global (experimental) parameters that influence fines generation are as

presented in Figure 4. On a micro-scale (within a polymer particle) the various factors that

influence and lead to external fragmentation are as shown in

Figure 5 (GRAF-S theory). All the above influences (macro and micro) are discussed in detail

in the latter chapters of this thesis. The following chapter describes the experimental set-up,

protocols and the analytical procedures that have been used and followed throughout this

study.
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Figure 4: Schematic representation of experimental parameters influencing fines generation.

Figure 5: GRAF-S, a semi-quantitative theory of fines generations and the various factors
influencing particle fragmentation and fines generation.
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Chapter 3: Experimental methods

3.1 Set-up

The experiments were performed in a 1.6l jacketed Buchi reactor, for slurry and gas phase

polymerizations.

Figure 1: Schematic of the 1.6l semi-batch Buchi reactor used in this study[1].

Figure 1 gives the schematic representation of the experimental setup. The reactor is a 1600

ml jacketed, stainless steel, semi-batch, Buchi reactor, designed for operating at pressures up

to 40 bars and temperatures up to 125C. The setup is equipped with automated catalyst

injection systems suitable for both dry powder and slurry catalysts. The slurry catalyst

injection unit can also be used for the addition of liquids (hexane, for instance). The reactor is

equipped with a helical stirrer combined with a propeller at the tip ensuring good powder

circulation. This forced circulation improves heat transfer from the polymerising particles to

the cooled reactor wall. The stirrer speed can be varied in the range from 50rpm up to

2000rpm.
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The jacket and the cover plate of the reactor are heated with circulated hot water from

individual water baths. The reaction temperature is measured above the helical stirrer. The

reactor temperature for isothermal experiments is maintained within 0.2C by controlling the

jacket temperature by cold water addition using a PID cascade controller.

A HP3852A Data Acquisition/Control Unit (DACU) measures all the temperatures, pressures

and mass flows. The entire set-up is controlled and monitored from a PC using HPVEE

software.

3.2 Materials

The catalyst used in this study is a highly active industrial Ziegler-Natta catalyst (with a TiCl4

loading of > 6% on a MgCl2 support) kindly provided by Borealis. The catalyst is a

suspension (22.6 wt %) in mineral oil slurry and needs to be activated with a co-catalyst such

as Tri-ethyl aluminium (TEA). TEA (>99.9% purity) used in this study was obtained from

Akzo-Nobel and was used as both scavenger and co-catalyst.

Ethylene (purity > 99.9%, C2H2 < 7 ppm, feed quality, Hoekloos) is further purified over a 1l

column with oxidized BASF R3-16 catalyst, two 3.3l packed columns one filled with reduced

BASF R3-16 catalyst and one with molecular sieves (13X, 4A and 3A, Sigma-Aldrich) and a

1l column with Selexsorb® COS[2].. This extended purification unit removes CO, oxygen,

water, CO2, H2S and COS from the ethylene monomer. Nitrogen (purity >99.999%, O2 < 1-

10 ppm, H2O < 1-10 ppm, Praxair) and hydrogen (purity >99.999%, Praxair) are purified

over BASF R3-11 catalyst and molecular sieves (13X, 4A, 3A).

Hydrogen (purity>99.999%, Hoekloos), Nitrogen (purity >99.999%, O2 < 1-10 ppm, H2O <

1-10 ppm, Praxair) and hexane (purity >99%, pro synthesis, Prolab) were also purified in the

separate proper purified equipments including two columns, reduced BASF 3R-11 catalysts in

order to chemically absorb oxygen and molecular sieves (3A, 4A, 13X, Sigma-Aldrich) to

physically absorb CO2, H2O and other impurities, respectively. For nitrogen two 19l packed

columns are used and for hydrogen four 0.5l packed bed reactors are used.
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3.3 Experimental Protocol

3.3.1 Catalyst Preparation

Approximately 7 mg of catalyst has been used for all experiments, unless otherwise

mentioned.60mg of TEA is used as the co-catalyst for all experiments, unless otherwise

mentioned. Additionally, for all experiments, 90 mg of co-catalyst (TEA) is used for

scavenging the reactor.

3.3.2 Standard Experiment

A typical standard experiment involves the following steps:-

 A leakage test is performed with nitrogen, to ascertain if there is any leakage in the

system.

 An automated flushing procedure is performed at high temperature (80-90C) using

nitrogen. This procedure takes about 45 minutes and the reactor and all lines connected to

it are flushed about 12 times during the same period.

 Once the flushing is over, the reactor is evacuated.

 The Eurotherm is set to the required temperature set point. The reactor is filled with the

required amount of hydrogen (if the experiment contains hydrogen). Note: Hydrogen has

always been filled on empty reactor basis, in all the experiments performed.

 After this, hexane is fed into the reactor using a liquid injection system, (typically about

800 ml)

 The co-catalyst (normally 150~160 mg) is injected into the reactor using the liquid

injection system. The total TEA is divided into two parts: 90mg of TEA as scavenger and

the remaining 60mg performs the role of the co-catalyst.

 Once the co-catalyst has been injected into the reactor, an allowance of 5-10 minutes is

given, for scavenging and equilibration, before feeding in monomer (ethylene in this case)

to the required pressure.

 Meanwhile, the catalyst is prepared. The catalyst amount has more or less been kept

constant (~6-7 mg) for all experiments, except in experiments where we study the

influence of catalyst amount on reaction kinetics and particle breakage. The stirrer speed

has always been kept constant at 400 RPM for all experiments, .unless mentioned

otherwise. The catalyst used for all the experiments is the same as mentioned above,

unless mentioned otherwise.

 The prepared catalyst is injected into the reactor, using the liquid injection unit (using n-

hexane). The injection unit is flushed typically 4-5 times, to make sure there is no residual

catalyst left in the injection lines. This typically signals the beginning of the reaction.
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 The mass-flow controllers typically take a minute or two to show a response. Most

experiments are performed for a one-hour duration. During this period, the HPVEE

software controls and stores all the online parameters as a text file in the computer.

 At the end of the experiment, the data is saved and the program is stopped.

 The reactor is then purged slowly and the jacket of the reactor is cooled to room

temperature.

 Once, the reactor has cooled down, it is opened and the polymer along with hexane is

removed. The polymer is then separated and dried in a vacuum oven at 60°C for four

hours. Care is taken to ensure minimal product losses during the filtration vacuum drying.

The data obtained from the HPVEE software is processed to obtain the temperature, pressure

and rate profiles for individual experiments.

3.4 Reaction rate measurement and reproducibility

Under isobaric-isothermal conditions, neglecting the influence of

- the freshly produced polymer (in terms of sorption of components),

- a possible deviation from the equilibrium monomer concentration,

- changes in volume and temperature during the catalyst injection,

the polymerization rate corresponds directly to the mass flow of ethylene that is required for

keeping the pressure constant. At the beginning of a given experiment, the system needs some

seconds to start the mass flow controller operation.

Figure 2 shows a typical rate profile for a standard experiment (4 independent experiments

for comparison). Cat1 shows a typical activation period (the time of which depends on

reaction conditions), reaches a maximum before deactivating. The fluctuations observed are

due to fluctuations in the thermocouple couple. The kinetics is reproducible with deviations of

± 5% of the polymerization rate.

It should be noted that all experiments were performed in the absence of gas-liquid mass

transfer limitations. Preliminary experiments were performed to optimise the stirrer speed to

ensure that we were outside the regime of gas-liquid mass transfer limitations. Diffusion

limitations on a micro-particle scale can be neglected [3-5]. In this case, it takes about 35 min to

reach the rate maximum, where the activation and deactivation counter-balance each other.

The polymer yield is measured directly by weighing the dried polymer after filtration and

drying. This amount is rechecked with yield obtained from the integrated rate curve.
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Figure 2: Kinetics reproducibility over 4 experiments at 2 bars C2 and 10 bars H2, 70C

Figure 3: Experimental solubility of ethylene in n-hexane at 40°C (●) and 60°C (■) and
modelled with PC-SAFT EOS with an interaction coefficient of 0.028.

The monomer bulk concentration in the slurry is given by its solubility in the solvent, i.e. the

solubility of ethylene in n-hexane in this case. Experimental solubility of ethylene in n-hexane
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at 20°C, 40°C and 60°C [6] was modelled with PC-SAFT-EOS and extrapolated to 70°C and

80°C with an interaction parameter of 0.028[7] in all cases, as shown in Figure 3.

3.5 Product Characterisation methods

3.5.1 Particle size analysis

In this study, the Malvern Mastersizer 2000 was used to measure the particle size distribution

(PSD) of the produced polymer samples. The system uses equivalent sphere approximation to

accurately measure the PSD (with an accuracy of up to 10-15 µm from our observations).

Figure 4: Normalising the particle size distribution with the yield

The particle size distribution depends a lot on the yield of polymerization (higher yield

typically should produce bigger particle sizes, assuming there is no fines production). Hence,

it is incorrect to compare PSDs across experiments with different polymer yields. The particle
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Figure 4, shows the percentage undersize against the normalised diameter. Trends tending to

the left indicate fines production (lower particle sizes) and those tending to the right indicate

bigger particles or agglomerates.

3.5.2 Differential Scanning Calorimetry (DSC)

The apparatus used here is a Pyris 1 from Perkin Elmer. About 5-6 mg of the polymer sample

is weighed in the aluminium pan. The analysis is then carried out by running two ramped

heating cycles with a cooling cycle sandwiched in between. The cycles are as illustrated

below:

1. Heat from 30 to 160°C at 10°C/min and cool from 160 to 30°C at 10°C/min

2. Heat from 30 to 160°C at 10°C/min and cool from 160 to 30°C at 10°C/min

The first cycle simply serves to eliminate the crystallisation occurring during the

polymerization and it is the second heating cycle that is typically considered. A third heating

cycle may be repeated after the second cooling cycle, if necessary, to ratify the preciseness of

the result. Typically, the 2nd and 3rd heating peaks are identical. The enthalpy (crystallinity is

calculated from it) and polymer melt temperatures are thus taken from the values obtained in

the second cycle. The polymer melt temperature is the temperature at which the heat flow is

maximum, i.e. at a value where all the polymer chains have melted. As for the crystallinity,

the DSC measures the change in enthalpy as the polymer melts. The crystallinity is then

calculated as the enthalpy change of the sample divided by the enthalpy of pure polyethylene,

as shown in equation (12).

100(%)
%)100(







PE

sample

H

H
tyCrytallini

The heat of crystallization of 100% crystalline  polyethylene ( ΔHPE (100%) ) is equal to 290 J/g

(Borealis standard).
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3.5.3 Gel Permeation Chromatography (GPC)

The sample (depending on the molecular mass but generally about 1 mg polymer / ml solvent)

is dissolved in Tri-ChloroBenzene (TCB) and heated at 160°C for about 2h (or until complete

dissolution). A small part of the sample is then passed through the GPC. The measurements in

this study were carried out using a Waters 2000 GPC, and the treatment of data was done

using the Millenium software package. Molecular weight distribution and averages were

determined using the universal calibration curves obtained from narrow polystyrene

standards. The sampling and measurements of molecular weight distributions are carried out

using a carousel holding 24 samples. During the measurements, this carousel is kept at

160°C,. As each sample takes 90 minutes to analyse, the samples might stay up to 36 h in high

temperature, thus provoking a certain risk of degradation of the polymer chains. A standard is

in place in the first and last measuring position of the carousel and if no drift between these

two points is observed the samples are considered correct. The used standard has a

significantly higher sensitivity towards polymer chain decomposition than the polyethylene

samples.
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Notation
dpol = diameter of polymer particle (µm)
ρpol = density of polymer (kg/m3)
εpol = porosity of polymer
dcat = normalised catalyst diameter (µm)
ρcat = density of catalyst (support) (kg/m3)
εcat = porosity of catalyst
l = Litre
Rp = polymerization rate (gpolymer /g-cat hr)
Y = yield of polymer (gpolymer/g-cat)
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Chapter 4: Fragmentation: Influence of Monomer Pressure

4.1 Introduction

As already pointed out in Chapter 2, fragmentation and polymerization rate influence each other.

We describe this issue with some more results from public sources. The polymerization rate can

be varied by monomer pressure, by temperature and by catalyst loading, for example. We

selected the monomer pressure to study the influence of the polymerization rate on particle

fragmentation and vice-versa in slurry ethylene polymerizations. The influence of monomer

pressure on the kinetics of ethylene polymerizations (slurry and gas phase) has been widely

researched and documented[1-7]. It is well known that with increasing monomer pressure the

polymerization rate increases, showing a first order or broken order dependency regarding the

bulk monomer concentration. It is a well accepted fact that the particle fragmentation can have a

strong influence on the observed kinetics during the polymerization reaction[8-13].

Buls and Higgins[14-16] showed that fragmentation occurred during the early stages of propylene

polymerization in slurry for their TiCl3/ AlEt2Cl catalyst system. They observed that as the

polymerization progressed, the catalyst fragments were gradually dispersed within the expanding

polymeric matrix within the particle. The catalyst fragments coated with polymer were dragged

outward from the centre of the particle, presumably with a velocity determined by the

polymerization rate. This analysis was the earliest concept that linked the polymerization rate to

particle fragmentation1. Prior to Buls and Higgins, Chanzy et al.[15,17,18] had studied the influence

of monomer pressure on particle morphology in ethylene polymerization with a catalyst system

based on VCl3 / AlEt3 on various substrates. They found that after a long polymerization time,

worm like fibres of PE were obtained which when examined closely resembled a network of

aligned fibres, more commonly termed as the “cobweb” morphology.

1 we introduced this concept as “convective polymer flow”, see chapter 2
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Figure 1: Cobweb structure of a nascent PE film as observed by Chanzy et al[18] (reproduced).

According to the authors, this structure was due to the polymerization process that induced a

tangential stress that is distributed over the particle radius (the authors call the polymer layer at a

certain radial position “membrane”), see Figure 1, due to expansion of the inner layers. To

counterbalance this effect, the outer “membrane” developed biaxial stresses (radial and

tangential) as polymerization progressed. As a result, the applied deformation generated some

deep cracks in the “membranes” bridged by fibres that stemmed from the polymer matrix

stretching (when the polymer was led beyond its elastic limit). This study is one of the first to

mention the development of an internal stress during the polymerization process2.

By varying the monomer pressure, we can control the internal stress and it becomes interesting

how the growing particle responds in both polymerization rate and morphology. Modelling can

strengthen our understanding of such processes, even if we take into account that modelling of

such a complex process is always a simplification of the reality. Laurence and Chiovetta[13] were

the first to treat the subject of fragmentation in detail with their multi-grain model based on the

morphology of the particle. It was assumed that the particle fragmented when a certain arbitrary

amount of polymer was deposited on the active sites at a given position, and that the rates of

diffusion were different in the fragmented and unfragmented parts of the particle. While

2 we introduced this concept as “internal fragmentation”, see chapter 2
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interesting, this and later extensions of this and other concepts[19-24] remained very simple, and

did not allow polymer properties or the rate of reaction to be directly related to particle

morphology in a wide field of operation variables (temperature, pressure, concentrations, catalyst

preparation). Simonazzi et al[25] proposed the use of stress balance models to describe particle

fragmentation and growth. Such a model based on the build-up of stress within a growing

polymer particle was actually developed by Kittilsen et al[10,26]. A simplified mathematical model

related to the rate of reaction to the build-up of tension inside the particles linking chemistry,

mass transfer, polymer properties and particle morphology. It was shown in this study that

extremely rapid reactions could lead to a rapid increase in the stress inside the particle,

sometimes to a point where the macro-particle will rupture than continue to grow

homogeneously. Later, Grof et al[27,28] and Merquior et al[29,30] have also made an effort to study

the same in their morphogenesis model and heterogeneous model for polyolefins, respectively.

In this work an effort has been made to study the influence of monomer pressure (and hence

polymerization rate and the resulting growth stresses within the particle), on growth and

fragmentation of the particle for slurry ethylene polymerizations using a highly active

conventional Ziegler-Natta catalyst. It is well accepted that growth stress (varied by monomer

pressure via the polymerization rate) and brittleness (varied by crystallinity via the molecular

weight and matrix properties) determine the fines generation (measured by PSD) as part of the

morphology, but nobody3 studied experimentally and interpreted the interaction between

- Polymerization rate (Rp)

- Particle size distribution (PSD)

- Crystallinity

- Molecular weight (Mw)

4.2 Experimental

The experiments were performed in a 1.6l jacketed Buchi reactor[1]. The details of the

experimental setup and the experimental protocol are as explained in Chapter 3. All experiments

were performed at a constant temperature of 70°C. The catalyst (7mg) and co-catalyst amounts

were also kept constant for all the experiments.

3 the same concept is used in the thesis of M. Daftaribesheli[31]
in the same research group who focused on the

comparison of slurry and gas phase PO processes in 2009 too
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4.3 Results and Discussion

The molecular weight, crystallinity, yield of produced polymer and the maximum polymerization

rate at different monomer pressures are as listed in Table 1. It can be clearly seen from Table 1

that with increasing monomer pressure, the molecular weight increases with nearly no influence

on the crystallinity of the polymer. The poly-dispersity index (Mw / Mn) is also constant for all the

experiments.

Figure 2 and Figure 3 represent the kinetics of polymerisation at different monomer pressures

and the normalised particle size distribution (as described in Chapter 3) of the final polymer

respectively. In the absence of any influence of crystallinity, there are only two influences that

play an important role – the skin formation and the internal stress (which is directly related to the

polymerization rate) within the growing particle. It can be seen from Figure 2 and Table 1 that

with increasing monomer pressure the maximum polymerization rate also increases. From the

particle size distribution (Figure 3) we observe the following:

- At 2 and 5 bars monomer pressure we can observe disintegration of the particle leading to

a shift in the PSD towards smaller particles. Plausible reason: the outer skin does not

keep the fragments together.

- At 8 bars monomer pressure, we see the optimum conditions with no disintegration.

Plausible reason: We can clearly see that we have internal fragmentation in this case

with the higher slope in the polymerization rate. However, the formation of a thick skin

could hold these fragmented micro-grains together.

- At 10 bars monomer pressure, we see clearly see particle disintegration with a shift to the

left in the PSD. Plausible reason: Internal stress is too high for the skin to withstand

leading to particle disintegration.

- At 20 bars monomer pressure, a complete disintegration of the particle is observed.

Plausible reason: Very strong internal stress leading to early disintegration of the

particle, and as a result leading to more active sites available for polymerization. This

can also be clearly observed from the steep slope of the polymerisation rate curve.
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Figure 2: Influence of monomer partial pressure on the polymerization kinetics of ethylene slurry
polymerization, at a temperature of 70°C.

Figure 3:Influence of monomer partial pressure on the particle size distribution of ethylene
slurry polymerization, at a temperature of 70°C.
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PC2

(bars)
Rpmax

(kg PE /gcat hr)
Yield

(g PE / gcat) wM nM wM / nM
%

Crystallinity

2 5 3309 601100 131000 4.5 47.6

5 23 18459 826200 202000 4.1 46.7

8 29 23154 973800 238700 4.1 46.3

10 51 32080 1223000 263900 4.6 45.9

20 100
*

50000 1095000 227800 4.8 45.9

Table 1: Influence ethylene pressure on maximum polymerization rate, yield, MWD and crystallinity at 70°C.

Figure A: Schematic showing the filling of polymer within the catalyst pores Figure B: Plot of critical skin strength and internal
at different monomer pressures. stress versus monomer pressure
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How can all this happen ?

The most plausible explanation for the above observations could be related to the catalyst: the

pore structure (which could be different on the outside and the inside of the catalyst particle, for

instance consider a conical pore structure, see Figure A) and the activity of the catalyst (could

also be different on the inside and the outside, depending on the catalyst preparation). Clearly, at

low crystallinities (as is the case here), disintegration must occur mostly during the early stages

on the polymerisation.

Consider the active sites on the surface of the catalyst particle and in the pores during the early

stages of polymerization (Figure A). The active sites at the surface of the catalyst particle

encounters the monomer first and polymerization starts leading to the formation of the outer skin.

During this process, the monomer also diffuses into the pores of the catalyst where it encounters

more active sites, and polymerizes leading to filling of the internal pores with the polymer. Since

the inner pores are smaller than those on the exterior, the filling occurs faster leading to a higher

internal stress. After a critical filling degree, this high internal stress would lead to internal

fragmentation within the growing particle, and if the skin formed is not thick enough (which is

the case at low monomer pressures, 2 bars and 5 bars), would lead to disintegration of the

particle. If the skin is thick enough, it holds these internal fragments together and hence does not

allow the particle to disintegrate (this is the case at 8 bars monomer pressure). It must be noted

that in this case the internal fragmentation continues to occur as can be seen from the slope of

polymerization rate profile.

At higher pressures, the internal stress generated within the growing particle is more than the

elastic limit of the skin leading to its rupture and thus leading to disintegration of the particle.

This is the case at 10 bars. At very high pressures (20 bars) the internal stress is extremely high,

thus leading to complete disintegration of the particle during the early stages of polymerization.

This complete disintegration of the particle leads to more active sites being exposed to monomer

(higher surface area / volume) and thus contributing to the very high polymerization rates. The

entire phenomenon is illustrated in a more simplified manner in Figure B, where the critical skin

strength and the internal stress is plotted as a function of the monomer pressure. Skin stabilisation

depends on the rate of skin growth and the internal stress generated. If the stress generated due to

polymerization is higher than the rate of skin growth, it would destabilize the skin leading to its

rupture and eventual disintegration of the particle. It must be noted that at a local position the

skin properties are also distributed.
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Figure 4: Maximum polymerization rate vs. ethylene partial pressure in slurry at (□) 70C and
(●) 85°C.

Figure 5: Order of polymerization reaction at (□) 70C and (●) 85°C was found to be ~1.3-1.4
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Figure 4 and Figure 5 show the influence of monomer pressure and the influence of the

monomer bulk concentration, respectively, on the maximum polymerization rate. It can be clearly

observed that after full fragmentation of the particles, the polymerization rate bears a linear

dependence on the monomer pressure at both 70C and 85C, except at lower monomer pressure (2

bars). From the polymerization rate profile (Figure 2) it can be seen that the polymerization

continues to increase at 2 bars ethylene pressure. This means that if this experiment was

continued some more time, the polymerization rate would have reached a maximum. At this

maximum, the fragmentation of the particle would also be complete. This higher Rpmax would

then bear a linear dependency on the monomer pressure exhibiting a first order behaviour

throughout. This could possibly explain the broken order dependency of polymerization rate on

the monomer concentration that has been reported in literature[2-7,32-34].

4.4 Conclusion

The different factors that influence and contribute to particle disintegration with increasing

monomer pressure are best illustrated in Figure 6.

Figure 6: Schematic of factors influencing particle disintegration with changing monomer
pressure.
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The local pressure or growth stress, developing within a particle during the early stages of

polymerization determines the extent of external fragmentation or particle disintegration. The

growth stress and its distribution directly correlates with the polymerization rate – the higher the

polymerization rate, the higher is the growth stress within the growing polymer particle.

However, particle fragmentation is an extremely complex process and depends not only on the

growth stress developed within the particle but also on other factors like the physical response

(stress relaxation, porosity, elastic/rigidity modulus, etc.) of the catalyst support, the polymer and

the thickness of the outer polymer skin.

8 bars ethylene partial pressure seems to be the critical limit for this catalyst system (under these

conditions), where the polymer and the catalyst support along with the outer skin, are able to

counter balance the internal growth stresses due to polymerization for this catalyst system. At

higher monomer pressures (10 bars and 20 bars), the internal growth stresses exceeds the elastic

limit of the polymer as well as the critical stress that the support can hold, leading to external

fragmentation of the growing particle, thus resulting in smaller particles and fines generation . In

addition, this external fragmentation further leads to more active sites being exposed to monomer

(higher surface area / volume), reduced mass transfer resistance, leading to a higher reaction rate.

This is more prominently exhibited at 20 bars monomer pressure.
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Chapter 5: Fragmentation: Influence of Co-catalyst

4.1 Introduction

The growth stress (which depends on the polymerisation rate) also depends on the

activation state of the catalyst (active sites), especially with highly active catalyst systems.

If the catalyst is pre-activated with co-catalyst, it would tend to display a faster activation

profile than one, which is activated in-situ during polymerization. This initial faster

activation, would lead to a higher growth stress in the first seconds of polymerization, and

hence undesired particle fragmentation and eventual fines production. Active sites, which

are generated by fragmentation (Schematic A), can contribute to the polymerization rate

only after activation – this means: there must be cocatalyst present at the local position

where new potential sites are generated by fragmentation. This activation process of new

active sites is – of course – faster in case of external fragmentation, because – in case of

internal fragmentation – the cocatalyst has to diffuse to the micro-crack inside the particle

where the new sites are generated.

Schematic A: Generation of new active sites due to fragmentation

As with the monomer influence, the combined influence of the catalyst pre-contacting1 and

co-catalyst concentration on the polymerization rate, particle size distribution, crystallinity

and molecular weight and their interaction has not been dealt with in detail previously.

We construct the following working hypothesis:

1. we assume the dependency of the polymerization rate as function of the co-catalyst

concentration shown in Figure 1. This is an equilibrium curve – the influence of cocat

1 Nooijen et al.[1
]
studied the influence of co-catalyst diffusion and pre-contacting on the polymerization rate

profiles for heterogeneous Zeigler-Natta catalysts. However, they did not report its influence on the particle
size distribution of the final polymer.
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mass transfer limitation (internal fragmentation!) and the kinetics of activation at

relative low co-cat concentrations in the reactor are not taken into account.

2. we assume an equilibrium between potential active sites (i.e. “new sites”) and activated

sites that can be described by

*CTEAC  (1)

This explains the fact that much more TEA than 1 molecule per molecule Ti is required to

reach the maximum polymerization rate (shown in Figure 1).

Figure 1: Influence of co-catalyst concentration on the polymerization rate

3. we assume that a pre-activated ZN catalyst “sees” a relatively high TEA concentration

( [CC]) near the active sites at the beginning of the polymerization process. All

potential active sites (that can be reached by the cocat) contribute to the Rp. Under pre-

contacting conditions, the equilibrium is reached quickly.

4. as soon as the polymerization starts, pure polymer flows away from the active sites.

This convective flow[2] depends linearly on the specific polymerization rate and moves

all components – especially the excess co-catalyst - away from the active site. All

components show a back-diffusion as demonstrated in Figure 2.

5. The co-catalyst is a relatively heavy molecule exhibiting a low diffusion coefficient

through the polymer layer. This can lead to starved co-catalyst conditions near the

active sites even if enough TEA is available at some distance from the active site – we

will call it “TEA transport effect”.
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Figure 2: Convective polymer flow during polymerization leading to back diffusion of
monomer, n-hexane and co-catalyst

6. Even if the back-diffusion rate of the cocatalyst is high enough, the freshly produced

polymer leads to a “TEA dilution effect” if the cocatalyst is “solved” in the polymer

phase.

7. The last two statements explain that [CC] can decrease below the critical concentration

near the active site and the equilibrium activation reaction (Equation 1) can shift to the

left resulting in lower polymerization rates

8. The back-diffusion is faster at low polymer phase viscosity, for example in hexane

slurry – with hexane swollen polymer phase - much faster than in gas phase.

9. The back-diffusion of CC should depend strongly on the polymer layer formed around

the active site.

4.2 Experimental

The experiments were performed in a 1.6l jacketed Buchi reactor[3]. The details of the

experimental setup and the experimental protocol are as explained in Chapter 3.

For the experiments to study the influence of pre-activation of catalyst on the kinetics and

particle fragmentation, the following conditions were used: 10 bars ethylene partial

pressure, 4 bars hydrogen, 90 mg TEA as scavenger. The temperature was kept constant at

70°C. For the experiment with catalyst pre-activation, the catalyst (7mg) is activated by

adding 60mg TEA into the same vial along with 2-3 ml of n-hexane. The pre-activation is

done for a very short period of 3 minutes before injection of the mixture into the filled

reactor using the liquid injection unit. In experiments without pre-activation, 150 (90+60)
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mg TEA or 270 (90+180) mg of TEA were added as scavenger & cocatalyst; the catalyst

was injected without TEA in this case.

Following the working hypothesis presented above, one can expect the following:

 without pre-activation: the monomer diffuses faster to the active sites, faster than

the TEA, but the polymerization can start only after arrival of both TEA and

monomer[4]. The slow diffusion rate of TEA should lead to a skin growth by

activation of the sites at the outer particle surface relatively long time before the

potentially active sites in the centre of the particle can be activated.

 Therefore, there is – at the beginning – a skin growth without internal stress and

fragmentation. This will lead to a reduced fines generation probability accompanied

by much lower activation of the potential active sites inside the particle, because

the polymer production front goes from outside to inside, and the TEA is forced to

diffuse against the convective solid flow.

 In case of a limited deactivation, both experiments, with and without preactivation,

should lead to similar maximum polymerization rates – if all potential active sites

are activated. This maximum polymerization rate is expected at longer reaction

times in case of experiments without preactivation.

 At very high TEA concentrations eventually combined with higher monomer

pressure, one can expect that the outer layers of the polymer particle are destroyed

by the tension generated within the reaction front while the core of the particle

remain inactive.



52 Influence of co-catalyst

4.3 Results and Discussion

Figure 3 and Figure 4 represent the kinetics and the particle size distribution respectively

for experiments with and without catalyst pre-contacting. The polymerization rate,

experimental conditions, molecular weight & crystallinity of the obtained polymer are as

listed in Table 1. From Figure 3 it can be clearly observed that pre-contacting the catalyst

with co-catalyst even for a very short time (~3 minutes) has a big influence on the kinetics

of polymerization. The initial slow activation period of ~20 minutes seen in the standard

reaction (without catalyst pre-contacting / pre-activation) is drastically reduced to ~ 5

minutes. This is clear and expected, as pre-activating the catalyst allows more active sites

to participate in polymerization instantaneously thus leading to the observed high initial

polymerization rates and subsequent reduction in the activation profile exhibited by the

catalyst under normal experimental conditions (i.e. without catalyst pre-activation). The

slower activation profile in the case of non-preactivation is definitely due to slower

diffusion of the TEA to the centre of the macroparticle and in the presence of the

convective polymer flow.

As expected the maximum polymerization rate (Rpmax) is the same in both experiments

(with and without pre-contacting). From Table 1 it can be also seen that the crystallinities

of the two samples are the same – obviously the production rate does not influence the

crystallinity of the in-situ formed polymer. This also supports the assumption of a low

contribution to the dead polymer formation by cocatalyst transfer (the average cocatalyst

concentration near the active sites is lower in case of the non-preactivated catalyst).

The high initial polymerization rate with catalyst pre-activation implies high initial growth

stresses within the growing polymer particle during the early stages of polymerization.

This high stress (at this crystallinity) during the early stages of polymerization leads to

higher internal fragmentation within the particle. In addition, higher internal fragmentation

would facilitate faster back diffusion of monomer / co-catalyst / n-hexane, leading to

higher accessibility to the active sites. In the absence of a thick outer skin, which is

especially the case during the early stages of polymerization, this combined influence leads

to particle disintegration and hence fines generation. This can be clearly observed in Figure

4.
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Figure 3: Influence of pre-contacting the catalyst (~ 3 minutes before injection) on the
polymerization kinetics at 2 bars ethylene partial pressure.

Figure 4: Influence of pre-contacting the catalyst (~ 3 minutes before injection) on the
particle size distribution at 2 bars ethylene partial pressure.
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Table 1: Influence of catalyst pre-activation on MWD and Crystallinity (using Cat1) at 10 bars ethylene and 4 bars hydrogen and
temperature of 70°C.

PC2 (bar) PH2 (bar) Co-cat (mg)
Rpmax

(kg PE /gcat hr)
Yield

(g PE / gcat) wM nM wM / nM % Crystallinity Tm °C

10 4 60 35 21481 158600 16800 9.4 63.4 134.6

10 4 180 50 31938 134,100 13200 10.1 63.5 134.5

Table 2: Influence of co-catalyst concentration on MWD and Crystallinity (using Cat1) at 10 bars ethylene and 4 bars hydrogen and
temperature of 70°C.

2 CatPA refers to pre-contacting the catalyst with the co-catalyst (TEA) for a short period of ~3 minutes prior to catalyst injection i.e. start of the experiment

PC2 (bar) PH2 (bar)
Co-cat
(mg)

CatPA
2 Rpmax

(kg PE /gcat hr)
Yield

(g PE / gcat wM nM wM / nM % Crystallinity Tm °C

10 4 60 NO 35 21481 158600 16800 9.4 63.4 134.6

10 4 60 YES 34 28958 113,300 11600 9.7 64.1 134.3
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The experiments with pre-contacting have shown a big shift towards the left i.e. towards fines

/ lesser particle size distributions as compared to that without catalyst pre-contacting / pre-

activation. The high initial growth stresses during the early stages of polymerization have led

to particle disintegration / external fragmentation leading to the production of fines.

In another experiment, it was intended to study the influence of the co-catalyst concentration

(without catalyst pre-contacting) on the kinetics of polymerization (growth stress) and the

particle size distribution of the polymer. The co-catalyst concentration was tripled keeping all

other parameters constant. The kinetics and particle size distribution of the obtained powder

are as listed in Figure 5 and Figure 6 respectively. The MWD and crystallinity of the

polymer are as listed in Table 2. It must be noted that by changing the co-catalyst amount the

Al/Ti ratio is altered. From Figure 5, a faster activation profile3 and a higher polymerization

rate (Rpmax) is observed with higher co-catalyst concentration.

Figure 5: Influence of co-cat (TEA) amount (3X) on polymerization rate at 10 bars ethylene
and 4 bars hydrogen.

3 Higher concentrations of TEA lead to faster activation of the catalyst / active sites but also lead to a faster
deactivation.
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Figure 6: Influence of co-cat (TEA) amount (3X) on the particle size distribution at 10 bars
ethylene and 4 bars hydrogen.

This is anticipated as a higher co-catalyst concentration would lead to activation of more

potential sites thus leading to the observed faster activation profile as well as higher

polymerization rate (Figure 1). Higher co-catalyst concentrations in the bulk (slurry) would

imply higher co-catalyst concentration in the polymer matrix (due to sorption) and hence

increase its availability to more active sites and consequently their activation, within the

growing particle. This in turn contributes to the observed higher polymerization rate. The

higher polymerization rates lead to the development of higher growth stresses within the

growing polymer particle (at the same crystallinity –Table 2) during the early stages of

polymerization, thus leading to external fragmentation / particle disintegration and production

of fines. This can be clearly observed in Figure 6 where the normalized particle size

distribution shifts to fines (to the left) in the experiments with higher catalyst concentrations.

One must also keep in mind, that TEA is a bulky molecule and diffuses slower than the

monomer. The slow TEA/ activation front (moving inwards to the core of the macroparticle)

is counter balanced by the faster reaction (polymerization) front leading to production of

greater amounts of polymer on the outermost shell of the catalyst / polymer particle. This

would consequently lead to a stress buildup on the outer shell of the polymer. This high

convective polymer flow could lead to lower concentrations of TEA in the core of the

macroparticle thus starving the active sites there and consequently leading to a drop in the

polymerization rate. This would mean that if an experiment is performed under very high
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TEA concentrations, and high monomer pressures (20 bars partial pressure, for instance), one

can expect that the outer layers of the polymer particle are destroyed by the high tension

generated within the reaction front while the core of the particle remain inactive due to

transport and slower back diffusion of the relatively bulky TEA molecule.

4.4 Conclusion

The local pressure or growth stress, developing within a particle during the early stages of

polymerization determines the extent of external fragmentation or particle disintegration. The

higher the increase in the polymerization rate, the higher is the local growth stress generated

within the particle. If this internal stress exceeds the critical elastic limit that the particle can

withstand, it leads to external fragmentation or particle disintegration

Pre-activation of the catalyst led to a higher initial polymerization rate and reduced the

activation period drastically. This high polymerization rate, directly translates to very high

growth stresses, and in the absence of a thick polymer skin during the early stages of

polymerization, led to complete disintegration of the particle and consequently to the

production of fines. It must be noted that the maximum polymerization rate in both

preactivated and non-preactivated case was the same. The crystallinity of the two samples

were also similar.

In the absence of catalyst pre-activation the build up of the stresses is slower due to slower

reaction kinetics primarily due to slower diffusion of the TEA into the growing polymer

particle. However, at high TEA concentration, there is a greater stress on the outer skin due to

the counterbalance of the TEA/activation front and the expanding polymer / reaction front

leading to a greater production of polymer in the outer shell of the macroparticle vis-à-vis the

inner core, thus leading to rupture of the outer shell and hence fines generation.
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Chapter 6: Fragmentation: Influence of hydrogen

6.1. Introduction

Almost all the existing theories are focussed on the chemical influences of hydrogen on the

kinetics of ethylene polymerization; i.e. slower re-initiation of active centers, following chain

transfer to hydrogen [1-4], or as a consequence of reversible coordination reaction [5-7] or

deactivation of active sites in the presence of hydrogen [8-11]. All these studies have reported

decreasing polymerization rate in presence of hydrogen, however, a few studies have reported

otherwise[12]. In all these studies, only a little information on the physical impact of

parameters is discussed; e.g. influence of crystallinity on monomer diffusion [3]. The influence

of hydrogen on the brittleness and the fragmentation combined with new active site

generation has not been discussed – but this seems to be obvious from our theory presented in

chapter 2. In this chapter and in the work of Daftari et al[13], it has been shown that one can

observe both rate depression (due to the chemical effects), as well as acceleration of the

polymerization rate[14] (due to physical effects like disintegration or external fragmentation of

catalyst / polymer particle) with the introduction of hydrogen in ethylene polymerizations.

The main processes that determine the influence of hydrogen on the polymerization rate have

been identified. They are,

1. Chemical Effects

1.1 Slow first monomer incorporation

The retarding effect of hydrogen has been well observed and reported in literature. The

depressing effect of hydrogen has been found to be reversible[4,5,8].

n

k

PHCHP  
*

1

2
* (1)

1

2
* PMHC

k

 (2)

Equation 1 represents a chain transfer to hydrogen where P* represents an active polymer

chain, C*-H represents the active site-hydrogen complex and Pn the dead chain. k1 is the

rate constants of the reaction. Equation 2 describes the incorporation of the first monomer

unit by the Ti-H, with a rate constant k2. If the rate of (2) is smaller than the rate of (1)
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than we would observe an increase of the C*-H concentration and consequently a decrease

in the observed polymerization rate i.e. a retarding effect.

1.2 β-agostic deactivation

The Ti-C2H5 specie (P1) that results

- after 1st insertion of one monomer unit into the Ti-H bond or

- after chain transfer to ethylene,

2

21
1*

|

CHH

CHTiPMC k





 (3)

exists in equilibrium with a β-agostic structure shown above (Equation 3). This structure

is assumed by Kissin to be dormant.

1.3 Retarding effect of the co-catalyst[9]

Reversible retardation of the polymerization rate has been observed with the introduction

of hydrogen for Vanadium Magnesium chloride (VMC) catalyst.

 chainpolymerPpolymerHVHPV  2 (4)

HAlRRVAlRHV 23  (5)

(6)
(Cp) (Cpd)

According to this theory[9], catalyst deactivation is caused by dialkyl aluminumhydride

that is formed due to a side reaction between the co-catalyst (tri-alkyl aluminium) with the

V-H bonds and then being adsorbed onto the catalyst active sites. These species adsorb on

active sites transforming them into the inactive “dormant” state, thus leading to a

reversible reduction in the polymerization rate.

2. Physical Effects

2.1. Mass transfer limitation

At high crystallinities, some of the active sites especially in the region of crystallites, can

be blocked by the crystalline phase, where monomer diffusion is very limited, leading to a

mass transfer limitation and consequently to a reduction in the polymerization rate.

RH

AlVHAlRPV

RP

 2
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2.2. Our theory

The principles of our theory are given in chapter 2. With the focus on the hydrogen

influence we can summarize as follows:

- The influence of hydrogen on the MWD and crystallinity is well known and stated in

literature[1,15-18]. Higher concentrations of hydrogen in the system lead to shorter

polymer chains

- shorter polymer chains crystallize faster due to their higher mobility (and form larger

crystals?[13])

- low molecular weight polymers form a matrix with lower viscosity; the chains

moving within such a matrix show a higher mobility. In slurry polymerizations, this

matrix is partially swollen with the slurryfying agent, which increases the mobility of

all molecules further leading to higher crystallization rates.

- High crystallinity implies higher brittleness, and in the presence of critical growth

stresses, this leads to faster fragmentation

- Especially during the initial period, this fragmentation of particles leads to more active

sites – with or without disintegration of particles – and consequently (after contact

with cocat) to higher polymerization rates.

Disintegration depends on the ratio of skin formation rate and internal stress generation

rate.

Note: We do not exclude the chemical effects described above, but we claim that these

effects can be overlapped and sometimes over-compensated by physical effects as

described by our GRAF-S theory, some of which has been shown by Daftari’s work[13]

and will be also be shown in this work.

6.2. Experimental

The experiments were performed in a 1.6l jacketed Buchi reactor [19]. The details of the

experimental setup and the experimental protocol are as explained in Chapter 3.

All experiments were performed at a constant temperature of 70°C. The catalyst (7mg) and

co-catalyst amounts were also kept constant for all the experiments.
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6.3. Results and Discussion

Case 1: External particle disintegration

This case has been extensively discussed in PhD thesis of Majid Daftaribesheli[13]. A

conventional Ziegler-Natta catalyst with a high sensitivity of hydrogen pressure was used in

this study. It was observed that increasing hydrogen pressure (at constant monomer pressure,

2bars) leads to intensive particle fragmentation. The basis for this observation is the same as

has been explained in Chapter 2 and earlier in this chapter in “Our Theory”. Increasing

hydrogen concentration, leads to lower molecular weights due to chain transfer, thus resulting

in the production of shorter chains, which crystallise faster. This high crystallinity, in the

presence of a critical growth stress leads to disintegration of the particle, in the absence of a

thick skin.

Figure 1: Time series experiments with Hydrogen (6bars): Influence on particle size
distribution ( using a ZN catalyst) at 2 bars ethylene pressure and temperature of 80°C1.

An interesting aspect of this study, were Daftari’s two stage experiments that were performed

to investigate the influence of hydrogen during early stage polymerization (see Figure 1). It

can be seen that particle fragmentation is the maximum when hydrogen is introduced right

from the beginning of the experiment – producing lower molecular weight polymers (shorter

chains which crystallise faster) with higher crystallinity, leading to disintegration of the

particle in the presence of a critical growth stress. When the introduction of hydrogen is

1 PhD thesis of Majid Daftaribesheli, TNW, University of Twente
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delayed even by a short time (5-20 minutes) a huge shift away from fines is observed in the

particle size distribution. This is clearly due to the formation of amorphous, ductile PE during

the early stages of polymerization, and the formation of a thick outer skin (with a lower

crystallinity and hence brittleness) which prevents particle disintegration.

Case 2: Internal particle disintegration within the polymer skin

The outer polymer skin has a very important role to play during polymerization[20]. It must be

noted that particle disintegration could occur internally within a particle, with the outer skin

holding the fragmented grains up to a certain crystallinity

The polymerization kinetics and the corresponding particle size distributions at 2 bars

ethylene partial pressure (70°C) and different hydrogen concentrations (0,2,10,18 bars) is as

shown in Figure 2 and Figure 3, respectively. The corresponding molecular weights and

crystallinities of the obtained polymer are as listed in Table 1.

PH2 (bar) wM nM wM / nM % Crystallinity Tm °C

0 601100 131100 4.6 47.1 134.7

2 83100 9470 8.8 70.7 131.0

10 41900 5030 8.3 76.7 129.0

18 22900 2310 9.9 86.3 128.2

Table 1: Influence of hydrogen on MWD and Crystallinity (using Cat1) at 2 bars ethylene
pressure and temperature of 70°C.

From Figure 2, an increasing polymerization rate profile is clearly observed with the

introduction of hydrogen. With increasing hydrogen partial pressure, along with a steeper

activation in the rate profile, a deactivation profile is also observed. This increase in the

activation slope is expected as increasing hydrogen concentration would lead to the

production of lower molecular weights and hence more crystalline polymer (see Table 1). The

crystalline polymer, by virtue of being more brittle would tend to fragment in the presence of

a critical internal stress. This internal fragmentation and / or disintegration, would lead to the

production of more active sites. In addition, it also leads to an increase in the micro-porosity

of the particle, thus enabling a higher transport of monomer / hydrogen / solvent/ co-catalyst.

Both these factors together contribute to the higher polymerization rate.
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Figure 2: Influence of hydrogen on kinetics of ethylene polymerization at 2 bars ethylene
pressure and temperature of 70°C.

Figure 3: Influence of hydrogen on particle size distribution at 2 bars ethylene pressure and
temperature of 70°C.
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From Figure 3 it can be seen that hydrogen shows no influence on the particle size

distribution up to 10 bars. Particle disintegration is clearly observed only at high hydrogen

pressure (18bars). This result at up to 10 bars hydrogen seems quite contrary to expectations.

This slightly different behaviour at lower hydrogen pressures (≤10 bars) can be better

explained if the we take into perspective, the influence of internal fragmentation (on the

polymerization rate), the role of the outer particle skin holding the fragments together and the

crystallinity of the produced polymer. The role of the outer polymer skin is extremely

important in this case, as up to a certain critical crystallinity (up to 76%), the outer skin is

thick and elastic (not brittle) enough to hold the internal fragments together thus preventing

particle disintegration. Above this critical crystallinity (76%) the skin formed is too brittle to

withstand the local growth stress even at low polymerization rates thus leading to

disintegration of the particle and hence fines generation. This critical crystallinity was also

observed in the investigations by Daftaribesheli[13]. Particle disintegration was extremely

pronounced at crystallinities > 76%.

An interesting experiment was performed to verify internal fragmentation and the importance

of the outer polymer skin. This has been dealt with in detail in the subsequent chapter

(Chapter 7) that deals on the importance of pre-polymerization during ethylene

polymerizations. It was observed that under the same conditions (2 bars ethylene, and 10 bars

hydrogen), the removal of the outer polymer skin lead to complete disintegration of the

particles, producing mostly fines. Clearly, a faster activation profile and a higher Rpmax was

observed in this case. This clearly illustrates the importance of the outer polymer skin and also

the presence of internal fragmentation during polymerization in the presence of hydrogen.

6.4. Conclusion

Hydrogen is a good chain transfer agent, and its introduction alters not only the chemistry but

also the physics during polymerization. Production of shorter chains leads to the lowering of

the local micro-viscosity, consequently facilitating higher chain mobility and faster

crystallisation kinetics. High crystallinity implies higher brittleness, and in the presence of

critical growth stresses, leads to increased particle disintegration. The overall increase in the

number of active sites exposed per unit volume due to particle disintegration, results in higher

monomer diffusion and availability around the active sites, consequently resulting in a higher

polymerization rate.

An overview of all the related influences is best illustrated in Figure 4. It clearly shows how

hydrogen (and of course hydrogen / monomer ratio) influences the properties of polymer

matrix and consequently that of the final polymer particle. Increasing hydrogen concentration

leads to production of a polymer with lower MW and microviscosity, thus facilitating higher
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chain mobility. The low MW implies higher crystallinity of the produced polymer, and hence

a more brittle polymer, which in the presence of a critical stress and in the absence of a thick

skin, would lead to particle disintegration.

Figure 4: Overview of the factors that control and influence particle fragmentation in
ethylene polymerizations

This study clearly illustrates that polymerization kinetics cannot be interpreted correctly

without taking into account the influence of the physics of the system, i.e. particle

disintegration. A higher polymerization rate is not always related to chemical complexation.

The importance of the particle skin and internal particle disintegration is clearly illustrated for

this catalyst. It must be noted that particle disintegration could occur internally within a

particle, with the outer skin holding the fragmented grains up to a certain crystallinity (<

76%). This internal disintegration (in the presence of an outer skin), would again lead to an

increase in the number of active sites and an increase in the internal porosity of the growing

polymer particle, higher monomer / hydrogen diffusion and consequently leading to an

increase in the polymerization rate. The importance of the outer polymer skin and its

influence on the kinetics of polymerization and particle size distribution is further discussed in

the next chapter.
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Chapter 7: Influence of pre-polymerization: the counterbalance of
fragmentation and agglomeration

7.1 Introduction

The influence of pre-polymerization (i.e. polymerization under “mild” conditions) using

ethylene has been studied extensively by Daftaribesheli[1]. In this chapter we focus on the

impact of a pre-polymerization with different co-monomers followed by main ethylene

homopolymerization. The background is:

- alfa-olefins are more bulky and should show a different fragmentation behaviour

- we can expect a different crack formation after reaching a different critical stress

- correspondingly, we can expect a different skin formation process

- the solubility of poly-hexene (PH) in alkanes (hexane) is high. This will avoid the

skin formation,

Chien et al[2] studied the influence of 1-hexene on the kinetics of ethylene polymerization

using a Ziegler-Natta catalyst. They reported an increase of up to 70% in the polymerization

rate with the addition of 15mol% 1-hexene. Chen et al[3] in their study found that propylene

causes a rate enhancement (25%-30%) for a subsequent ethylene polymerization but that

ethylene causes a rate reduction for a subsequent propylene polymerization. They further

observed that the rate enhancement/reduction effect increased with the duration of the

preceding polymerization. Chemical/kinetic effects (active sites and their modification; the

activation of new or dormant sites by reactions involving comonomer; the displacement by

comonomer of adsorbed or complexed molecules on the sites; and the inability of some types

of sites to initiate or homo-polymerize a certain monomer) as well as physical effects

(exposure of more active sites by improved catalyst breakup during copolymerization; the

reduction of mass transfer resistance caused by the formation of more amorphous copolymer;

and the enhanced solubility of monomers caused by amorphous copolymer formed or

increased polymer swelling by the heavier comonomer) were attributed as the likely causes of

both the rate enhancements and the rate reductions observed during sequential polymerization.
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Karol et al[4] in their investigation using highly active titanium and vanadium based catalysts

observed an increase in the polymerization rate in the presence of an α-olefin. The magnitude

of the rate increase was found to depend on the specific alpha-olefin; propylene > 1-butene >

1-hexene. Soares et al[5] in their study observed that pre-polymerizing the catalyst with

propylene increased the polymerization rate of ethylene as compared with the rate of ethylene

polymerization without pre-polymerization. Kissin et al[6] later developed a kinetic model to

explain the increase in polymerization rate observed in ethylene polymerizations. Kissin[7]

also reported an increase in the reaction rates with α-olefin addition in ethylene

polymerizations. They also reported a rate increase when ethylene polymerization was

preceded by propylene polymerization. Contrary to most other results, Bialek et al[8] in their

investigation using titanium and vanadium supported catalysts, reported a decrease in the

polymerization rate with the introduction of α-olefins in ethylene polymerizations. Bergstra et

al studied the influence of co-monomer (1-hexene) incorporation on the kinetics and product

properties in gas phase ethylene polymerizations using a metallocene catalyst. They reported

an increase in the reaction rate with increasing 1-hexene concentration and also developed a

complexation model to explain the same. Pimplapure et al[9] studied and reported an increase

in the polymerization rate in propylene polymerization and complete disintegration of the

particle when pre-polymerization was performed using 1-hexene. Smit et al[10] investigated

particle growth characteristics in ethylene/1-hexene co-polymerizations using a zirconocene

catalyst on a silica support. They observed that the presence of 1-hexene led to higher

productivity and easier fragmentation of the support during particle growth.

In this work an effort has been made to investigate the influence of low (≤10g polymer/g-cat)

/ very low yield (≤1g polymer/g-cat) 1-hexene and propylene pre-polymerizations, on the

kinetics, particle size distribution and morphology during subsequent main ethylene homo-

polymerization using a highly active conventional Ziegler-Natta catalyst supported on MgCl2.

7.2 Experimental

The experiments were performed in a 1.6l jacketed Buchi reactor[11]. The details of the

experimental setup and the experimental protocol are as explained in Chapter 3. The co-

catalyst concentration in the n-hexane slurry was kept constant in both the pre-polymerization

and the main polymerization steps. Two different pre-polymerizations were attempted: one

with 1-hexene and the other with propylene.
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Pre-polymerization with 1-Hexene

About 7mg of catalyst was taken in a glass vial with 3 ml of n-hexane (with TEA, same

concentration as in the slurry for main polymerization). To this the required amount of 1-

hexene is added (using a weighed syringe) based on the targeted yield. In this study we tried

1g PH1/g-cat and 10g PH/g-cat with a pre-polymerization time of 5 minutes (1-hexene is

extremely reactive and forms PH almost instantaneously at room temperatures[9]) before

injection of the pre-polymer into the reactor. The entire pre-polymerization was carried out at

room temperature. The pre-pol time is always 5 minutes unless otherwise mentioned (see also

Table 1).

Pre-polymerization with Propylene

A similar procedure as explained above for 1-Hexene was followed for propylene pre-

polymerization. The pre-polymerization was done for varying prepol yields from 0.15g PP2/g-

cat to 10g PP/g-cat before injecting it into the reactor. The pre-polymerization was carried out

at room temperature in a glass vial.

Main polymerization

One set of standard experiments were performed at a constant ethylene partial pressure of 5

bars and a temperature of 70°C. The co-catalyst (Triethyl Aluminium) concentration is the

same in all experiments (60 mg). As in all our experiments, 90 mg TEA was used for

scavenging the reactor.

Another set of 1-hexene pre-polymerizations was performed prior to main polymerizations at

2 bars ethylene partial pressure. Hydrogen (10 bars partial pressure) was also used in a couple

of experiments during main polymerization. All other parameters were the same as in the

previous set of experiments.

All properties (particle size distribution, crystallinity and molecular weight) of the final

polymer were measured as explained in Chapter 3.

1 PH refers to Polyhexene
2 PP refers to Polypropylene
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Following the experimental plan presented above, one expects to observe the following:

- With 1-hexene prepolymerization should lead to complete disintegration of the

particle, thus leading to the production of mostly fines.

- At higher polyhexene yields, not all the polyhexene is dissolved by n-hexane. The left

over polyhexene, due to its sticky nature, could lead to agglomerate formation.

- Presence of hydrogen in the main polymerization, should lead to increased

disintegration of the particle and higher crystallinity.

- Limited disintegration of particles with propylene pre-polymerizations due to the

presence of a thick outer skin.

7.3 Results and Discussion

The influence of low yield pre-polymerization using different co-monomers (1-hexene and

propylene) on the subsequent main (ethylene) polymerization has been discussed in this

section. The importance of the outer polymer skin has been illustrated using 1-hexene. This

discussion has been structured into 4 parts:

 Case 1:1-Hexene pre-polymerization with different yields: Low (10g PH / g-cat)

and Very Low (1g PH / g-cat) yield pre-polymerizations.

 Case 2: Low yield 1-hexene pre-polymerization with different prepol times

 Case 3: Very low yield 1-Hexene pre-polymerization followed by main

polymerization in the presence and absence of hydrogen

 Case 4: Propylene pre-polymerization

7.3.1 Case 1: 1-Hexene pre-polymerization with different yields – Importance of the
polymer skin.

Hexene pre-polymerization was performed as discussed in the experimental section with

varying pre-polymer yields: 1g PH / g-cat and 10 g PH / g-cat. The two are referred to in this

section as Very low Yield pre-polymerization and Low Yield Pre-polymerization. The pre-

polymerization time was kept constant at 5 minutes for all experiments in this case study. The

pre-polymerization was followed by main polymerization at 5 bars ethylene partial pressure

and a temperature of 70°C.
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Figure 1: Comparison of Kinetics for Low (10gPH/g-cat) and Very Low Yield (1gPH/g-cat)
1-Hexene pre-polymerization followed by 5 bars C2 main Polymerization at 70°C; the
numbers stand for the final yield

The influence of pre-polymerization on the kinetics and the particle size distribution (PSD)

are as shown in Figure 1 and Figure 2 respectively. The influence on the polymer end

properties i.e. molecular weight distribution (MWD) and crystallinity are as listed in Table 1.

Ppol
(g PH/g-cat)

Ppol Time
(min) wM nM wM / nM % Crystallinity Tm °C

0 0 826200 202000 4.1 46.7 135.0

1 5 939000 189000 5.0 57.7 134.8

10 5 902000 184000 4.9 56.7 134.5

10 90 909000 133000 6.8 56.7 134.9

Table 1: Influence of 1-hexene pre-polymerization on MWD and Crystallinity at 5 bars
ethylene pressure and temperature of 70°C.

It can be observed from Figure 1 that there is a slow induction / activation period in single

step (without pre-pol step) polymerization at 5 bars ethylene pressure. In the experiments with

the pre-polymerization step, this activation period is completely absent and the reaction starts

with a high polymerization rate (Rp). This implies, during the early stages of polymerization

we have an extremely high growth stress. From Figure 2 it can be observed that the PSD

shifts to the left with the pre-polymerization yield and we produce predominantly fines. A

similar observation was reported by Pimplapure et al[12] for propylene polymerizations. They
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observed a rate increase and reported complete fragmentation of the catalyst with extremely

small average particle sizes of the final polymer, when the pre-polymerization was performed

with 1-hexene.

The increase in the polymerization rate as well as the reduction in the PSD can be explained if

we understand the pre-polymerization step and the properties of the pre-polymer (Poly-

Hexene). The polymerization of 1-hexene to polyhexene is an extremely fast and

instantaneous reaction even at room temperatures. Polyhexene is a sticky polymer; however, it

is also highly soluble in n-hexane. As a result of the same, there is no outer polymer skin

holding the catalyst sub-grains (micro-grains) together leading to complete disintegration of

the catalyst. When the pre-polymerization is followed by subsequent main polymerization (at

5 bars ethylene pressure), the higher fragmentation (higher surface area / unit volume,

implying more active sites are exposed to the monomer) and pre-activation of the catalyst

leads to the observed high initial reaction rate. In addition the solubility of ethylene in

polyhexene is also higher. It must also be noted that viscous nature of polyhexene implies

slower or limited diffusion of polyhexene (formed during the pre-polymerization step) from

the core of the macroparticle to the outside (see Figure 4). This is especially the case with the

bigger particles leading to very different stress profiles within the particle; in the shell (low

stress) and the core (high stress).

All these factors along with the high polymerization rate together contribute to higher buildup

of growth stresses within the particle, and in the absence of an outer skin (since PH dissolves

in n-hexane), leads to complete disintegration of the particle and hence to the production of

pre-dominantly fines. This can be clearly seen in the PSD (Figure 2) even at very low yield

polymerizations (1g PH/g-cat). At higher pre-polymerization yields (10g PH/g-cat), these

fines, could stick together in the presence of a sticky interface of polyhexene leading to the

formation of agglomerates (see Figure 4). This clearly explains the different slope and shift to

agglomerates in the upper half of the PSD curve at higher prepolymerization yields (see

Figure 2).
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Figure 2: Comparison of PSD for Low and Very Low Yield 1-Hexene pre-polymerization
followed by 5 bars C2 main Polymerization at 70°C

Figure 3: SEM images (10μm, 2μm) of polymer with (right) and without (left) pre-
polymerization (with 1-hexene, 10gPH/g-cat)

Figure 3 shows the scanning electron microscope (SEM) images of the final polymer

morphology (after main polymerization at 5 bars ethylene pressure) with and without 1-

hexene pre-polymerization. The fragmentation of the catalyst with 1-hexene pre-
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polymerization is clearly visible at both 10μm and 2μm. Table 1 presents the MWD and the

crystallinity of the final polymer with and without pre-polymerization (Low yield and Ultra

Low yield). It can be seen that the Mw and crystallinity of the polymer with 1-hexene pre-

polymerization are both higher than in the experiments without the pre-polymerization step.

The higher Mw could be attributed to the higher bulk concentrations of the monomer (ethylene

in this case) in polyhexene. In addition, the accessibility of the monomer to the individual

active sites is also higher, and the mass transfer limitations are also far more reduced with 1-

hexene pre-polymerization. The observed higher crystallinity with 1-hexene pre-

polymerization is plausibly due to faster crystallization facilitated by the fragmented

morphology of the particle (Figure 3). The morphology of the particle without the pre-

polymerization step is extremely fibrous and interconnected. This kind of structure does not

facilitate faster crystallization as the energy required to break this network is high. The

fragmented morphology (obtained with 1-hexene pre-polymerization) does not have too many

inter-connections, thus facilitating a faster crystallization and hence displays higher

crystallinity.

Figure 4: Schematic representation: (a) stress buildup in a large particle due to slower
diffusion of polyhexene from the core of the macroparticle, (b) Agglomerate formation due to
sticky polyhexene.
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7.3.2 Case 2: Low yield (10g PH /g-cat) 1-Hexene pre-polymerization with different prepol

times – Fines and agglomerates

In this set of experiments low yield pre-polymerization (10g PH/g-cat) with 1-hexene was

performed for different times (5 minutes and 90 minutes). The prepol time refers to the time

1-hexene was added to the catalyst and kept before injecting into the reactor for main

polymerization (at 5 bars ethylene partial pressure, 70°C). Figure 5 and Figure 6 represent the

kinetics and the particle size distribution respectively of the experiments with 5 minutes and

90 minutes pre-pol time and also without pre-polymerization. The MWD and the crystallinity

of the produced polymer are presented in Table 1.

It can be seen that there is a big drop in the reaction rate and there is also a shift in the PSD

towards agglomerates / bigger particles with 90 minutes pre-polymerization. The reduction in

the polymerization rate can be attributed to long pre-contacting time of 90 minutes. It is well

known that long pre-contacting times in the presence of TEA can lead to deactivation or

reduction in the catalyst activity. It must be noted that at short prepol times (5minutes) there is

production of both fines and agglomerates. Agglomeration happens at a critical surface

concentration of sticky polymer (polyhexene, in this case) in the interface of two or more

particles as illustrated in Figure 4. The growth stress is higher in the case with low prepol

times due to the high reaction rate. With longer prepol times (90 minutes), the polyhexene

(which is extremely viscous and sticky) holds the fragmented catalyst micro-grains together

(the long prepol time allows the polyhexene to bond the fragmented micro-grains like an

adhesive) leading to the production of agglomerates. In addition, due to the low

polymerization rate, the growth stress is also substantially lower in this case. It can also be

observed that the top end of the PSD for both the low yield pre-polymerizations is the same.
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Figure 5: Influence of pre-polymerization time on the kinetics for Low Yield 1-Hexene pre-
polymerization followed by 5 bars C2 main Polymerization at 70°C

Figure 6: Comparison of PSD at different pre-pol times for Low Yield 1-Hexene pre-
polymerization followed by 5 bars C2 main Polymerization at 70°C
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7.3.3 Case 3: Very low yield 1-Hexene pre-polymerization followed by main polymerization

in the presence and absence of hydrogen

Very low yield (1g PH /g-cat) 1-hexene pre-polymerizations were carried out with prepol

times of 5 minutes, followed by subsequent main polymerization at 2 bars ethylene pressure

in the absence and presence of hydrogen (10 bars partial pressure) at a temperature of 70°C.

The kinetics and the particle size distribution are as observed in Figure 7 and Figure 8

respectively. There are a number of influences that can be observed from Figure 7. To

facilitate better understanding, we shall discuss the influence of 1-hexene pre-polymerization

on the subsequent main polymerization, in the absence and presence of hydrogen separately.

No hydrogen in main polymerization: 1-Hexene pre-polymerization (5 minutes prepol time)

showed an increase in the reaction rate and a reduction in the PSD leading to the production

of predominantly fines similar to that observed in Case1 with 5 bars ethylene during main

polymerization. The Mw and the crystallinity (refer Table 2) also showed an increase as was

observed in Case1.

In the presence of 10 bars hydrogen: In the presence of hydrogen (without the pre-

polymerization step), this catalyst showed a faster activation and also a deactivation profile.

The results of the same have been discussed in detail in Chapter 6. In this case, the increase in

the reaction rate was attributed to internal fragmentation within the particle (with the outer

skin holding the fragmented micro-grains together), as a result of which there was no apparent

difference in the PSD on the produced polymer.

When the main polymerization (with 2 bars ethylene and 10 bars hydrogen partial pressure)

was carried out after short pre-polymerization (5 minutes) with 1-Hexene, it can be observed

(from Figure 7) that the reaction rate was enhanced further more, which implies higher

growth stress during the early stages of polymerization. We can clearly observe particle

disintegration and production of fines (see Figure 8). The importance of the outer polymer

skin is clearly established in this experiment. The absence of the outer polymer skin (holding

the micro-grains together) in this case, contributes to the disintegration of the particles and

hence the observed shift in the PSD towards fines.
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Figure 7: Comparison of Kinetics for Low Yield 1-Hexene pre-polymerization (1g PH/ g-cat,
Prepol time = 5 minutes) followed by 2 bars C2 main Polymerization at 70°C

Figure 8: Comparison of PSD for Low Yield 1-Hex pre-polymerization (1g PH/ g-cat, Prepol
time = 5 minutes) followed by 2 bars C2 main Polymerization at 70°C
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PH2 (bars)
Ppol

(g PH/g-cat) wM nM wM / nM % Crystallinity Tm °C

0 0 601100 131100 4.6 47.6 134.7

0 1 686000 113000 6.1 60.3 134.5

10 0 41900 5030 8.3 76.7 129.0

10 1 23000 2770 8.3 82.2 129.1

Table 2: Influence of 1-hexene pre-polymerization (in the presence and absence of hydrogen)
on MWD and Crystallinity (using Cat1) at 2 bars ethylene pressure and temperature of 70°C.

From Table 2 it can also be observed that the MW of the polymer decreases and the

crystallinity of the polymer sample increases in the case with the 1-Hexene pre-

polymerization step. This is due to the higher bulk concentration of hydrogen in the matrix

(assuming that PH is still present all the time) and in addition its increased accessibility to the

active sites due to the initial fragmentation of the catalyst. This would favour more transfer

reactions, thus leading to the production of shorter chains and hence a lower MWD and

consequently higher crystallinity of the sample.

7.3.4 Case 4: Propylene pre-polymerization

Propylene homo-pre-polymerization was performed as discussed in the experimental section

with varying pre-polymer yields: 0.14 g PP/g-cat, 1g PP / g-cat and 10 g PH / g-cat. These are

referred to in this section as Ultra low Yield, Very low Yield pre-polymerization and Low

Yield Pre-polymerizations. The pre-polymerization was carried out at room temperature with

very low propylene concentrations in a glass vial. The pre-polymerization was followed by a

main homopolymerization at 5 bars ethylene partial pressure at a temperature of 70°C.

The influence of propylene pre-polymerization with varying yields on the kinetics and the

particle size distribution is as shown in Figure 9 and Figure 10 respectively. As can be

observed, a substantial increase in the polymerization rate was observed in the main

polymerization (with 5 bars ethylene) when the pre-polymerization was performed even for

extremely small yields of 0.14 g PP/g-cat.
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Figure 9: Influence of pre-polymerization (with propylene) on the polymerization kinetics at
5 bars ethylene partial pressure.

Figure 10: Influence of pre-polymerization (with propylene) on the particle size distribution
at 5 bars ethylene partial pressure.
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Figure 11: Influence of low yield propylene polymerization on the total yield during main
polymerization with 5 bars ethylene

Figure 12: SEM images (20μm) of polymer with (right) and without (left) pre-polymerization
(with propylene, 10g PP/gcat)
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With increasing prepol yields the reaction rate continued to increase substantially. This can

also be seen in Figure 11 which represents the polymer yields for the different experiments.

The highest yield is obtained with a prepol yield of 10g PP/g-cat. In order to check if this

increase is due to any pre-polymerization step or if it is due to a chemical effect due to

propylene as reported in literature[3-5,7] two experiments were performed: one with an ethylene

pre-polymerization step and the other when small amounts of propylene were fed into the

reactor as a co-monomer after filling the reactor with ethylene and before catalyst injection. In

both cases no increase in the reaction rate was observed confirming the chemical influence of

propylene pre-polymerization on the kinetics of ethylene main polymerization.

From the particle size distribution (refer Figure 10) it can be observed that there is not much

influence of propylene pre-polymerization on the PSD and hence there is no production of

fines during main ethylene polymerization. There is also no observable difference in the

polymer morphology as can be observed in the SEM images shown in Figure 12. This clearly

should be due to the presence of a thick outer skin that holds the micro-grains together, thus

preventing particle disintegration. This has also been observed and reported in

literature[9,12,13]. It can be also observed from Figure 10 that there is a shift towards

agglomerates at the higher end of the PSD at higher pre-polymerization yields (>1 g PP /g-

cat). This can be attributed to the sticky nature of polypropylene thus leading to some

agglomeration during main polymerization, just like polyhexene. This behaviour is however

not observed at Ultra Low yield pre-polymerization (0.14 g PP/g-cat) where the particle

(catalyst / support) is still pre-dominantly MgCl2 and follows the normal fragmentation

behaviour.

7.4 Conclusion

From Case1, Case2 and Case3 we can conclude that 1-hexene pre-polymerization can lead to

complete fragmentation of the catalyst as observed in literature[9,12]. This pre-polymerization

step determines the morphology and the particle size distribution of the polymer produced

during subsequent main polymerization, leading to the production of predominantly fines. At

the same time, this type of polymerization demonstrates the high brittleness of the carrier in

the earlier polymerization stages. Pre-activation of the catalyst and the fragmentation of the

catalyst during the pre-polymerization step lead to the higher observed polymerization rates.

The high polymerization rates leads to high growth stresses in the growing particles

contributing further to external fragmentation. The increase in the polymerization rate is

predominantly due to the physical fragmentation of the catalyst in the case of 1-hexene pre-

polymerizations. An important message from these experiments is that PSD cannot always be
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used as a measure to interpret particle disintegration. As shown in this study, it is possible to

have agglomeration due to particle disintegration. Hence, care must be taken to interpret

particle disintegration / agglomeration directly from the PSD.

In the case of propylene pre-polymerizations (Case4) the increase in the reaction rate is due to

a chemical effect as reported in literature. There is however no observable difference in the

morphology or in the particle size distribution of the final polymer after main polymerization

in the presence or absence of this pre-polymerization step. The key take out from this entire

study is that the early stages of polymerization are extremely critical (nearly all the important

things / steps happen during this stage) and determines the final product morphology.
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Chapter 8: Fragmentation – Influence of Temperature

8.1. Introduction

In gas phase polymerizations an overlapping of different influences has been described in the

previous chapters of this thesis, namely, influence of monomer pressure (chapter 4), hydrogen

pressure (chapter 6), fragmentation (refer chapter 2) and particle overheating , thus making it

an extremely complex process. A lot of work has been done in academia and industry to

investigate the influence of heat and mass transfer effects on local particle overheating

predominantly for gas phase polymerizations and has been reported in Appendix 2.

The experiments in this study have been performed in slurry to completely eliminate the

influence of local particle overheating. We can consider the particle temperature to be the

same as the bulk temperature.

Changing the temperature impacts the following parameters / properties in the reacting

polymeric system, for instance:

 Reaction Kinetics: With increasing temperature it is well known that the reaction rate

increases[1-3].

 Molecular weight (MW): With increasing temperature, transfer reactions are accelerated

faster than propagation leading to the formation of shorter chains and production of

polymers with a lower MW and higher crystallinity.

 Micro-viscosity: At higher temperature, the micro-viscosity of the polymer matrix

decreases.

 Transport properties: The softer matrix also influences the transport properties (chain

mobility and diffusion, sorption, swelling, etc.) within the growing polymer particle. For

instance, n-hexane sorption in the polymer increases in a closed system such as this, thus

leading to a more swollen polymer matrix.

 Material properties: The softer matrix also means the visco-elastic properties (brittleness /

ductility) of the polymer particle are different at higher temperatures.
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Particle fragmentation and the evolution of the polymer morphology depend on the stress

generation and relaxation[4,5]. The rate of the buildup of the stress depends on the rate of

polymerization reaction and inherits its Arrhenius dependence on temperature as well as the

effects of intra-particle transport of monomer and temperature dependent sorption of

monomer in the polymer[5]. The rate of stress generation is clearly dependent on the

polymerization rate which in turn is deeply influenced by the polymerization temperature.

With the above explanations one could expect the following:

 At low temperatures the reaction is relatively slow and hence would have lower stress

accumulation in the particle, provided the relaxation of the stress is sufficiently fast.

However, it must be noted that at lower temperatures the polymer is more brittle and

could form micro-cavities and disintegrate into fines[6]

 At higher temperatures, and higher polymerization rates the stress relaxation becomes

the dominant factor for the evolution of the polymer morphology. With higher

temperatures, the relaxation time for the stress decreases (due to reduction in the local

intrinsic viscosity[4]). The faster relaxation time at higher temperatures, implies the

stress is also relaxed quickly thus preventing high energy accumulation and external

particle fragmentation.

8.2. Experiments and Materials

The experiments were performed in a 1.6l jacketed Buchi reactor, for slurry ethylene

polymerizations[7]. The details of the experimental setup and the experimental protocol are as

explained in Chapter 3. The temperature was the only parameter that was adjusted according

to the required set point. In this investigation, the temperature was varied from 60°C to 85 °C.

All other variables were kept constant.
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8.3. Results and discussion

The influences of temperature on the polymerization kinetics and particle size distribution are

as shown in Figure 1 and Figure 2 respectively. The experimental conditions and the physical

properties of the final polymer, i.e. molecular weight, crystallinity, etc. are given in Table 1. It

is clear that the polymerization rate decreases strongly with decreasing temperature. However,

at higher temperatures (>80°C) it seems that the influence of temperature is limited or

significantly low.

It can be observed from Table 1 that with increasing temperature the molecular weight

(MW) decreases and the crystallinity of the polymer increases. This is expected, as

increasing the temperature of reaction accelerates chain transfer reactions, which have higher

activation energy, than chain propagation reactions leading to shorter chains and hence lower

MW. This consequently leads to the higher crystallinity of the polymer. However, it must be

noted that the overall increase in the crystallinity from 60°C to 85°C is small (<10%) and is

not in the critical range (% critical crystallinity >75%) where it could have a major influence

on particle disintegration.

Figure 1: Influence of temperature on the polymerization kinetics at 2 bars ethylene partial
pressure
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Figure 2: Influence of temperature on the particle size distribution at 2 bars ethylene partial pressure

T (°C)
Rpmax

(kg PE /gcat hr)
Yield

(g PE / gcat) wM nM wM / nM
%

Crystallinity

60 3.7 2857 1375000 280600 4.9 45.1

70 5.3 3309 601100 131100 4.6 47.6

80 7.8 6230 485600 98000 5.0 52.9

85 8.0 6470 492500 90000 5.5 52.7

Table 1: Influence of temperature on maximum polymerization rate, yield, MWD at 2 bars ethylene partial pressure
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The lower MW at higher temperatures also implies a reduction in the micro-viscosity within

the growing polymer particle. This reduction in micro-viscosity would lead to higher chain

mobility. In addition, n-hexane also contributes to the swelling of the polymer at higher

temperatures leading to a softer polymer matrix. This changes the solubility of monomer /

hydrogen and could lead to a slightly higher molecular weight with increasing

temperature. It can be seen from Table 1 that at 85°C the molecular weight is slightly higher

or similar to that at 80°C but has nearly the same crystallinity.

Looking at the PSD (Figure 2) it can be observed that with increasing temperatures the

Particle Size increases. The particle size is smaller at lower temperatures i.e. 60°C and

70°C respectively. For example, for a normalized particle diameter of 10μm, there is a 30%

reduction in the fines or particles with lower PSD at 85°C as compared to 60°C.

The stresses (growth stress in combination with thermal stress) generated within the growing

polymer particle are more at higher temperatures. It must be noted that at temperatures >80°C,

swelling of the polymer due to n-hexane and local particle temperature contribute to softening

of the polymer matrix. This softer polymer matrix makes the particle more sensitive to shear

and normal stresses.

The key factor to particle fragmentation (external) and morphology of the polymer particle is

the relaxation of these stresses[5]. With higher temperatures, the relaxation time for the stress

decreases due to the reduction in the local intrinsic viscosity[4] (lower MWD). The faster

relaxation time at higher temperatures, implies the stress is also relaxed quickly thus

preventing external particle fragmentation. At lower temperatures (60°C-70°C), the reaction is

relatively slow and hence stress buildup or accumulation within the growing particle is not as

fast as at higher temperatures, but the relaxation of the stress is obviously slow . From

Figure 2 it can be seen that the PSD shifts to the left (towards fines) at lower temperatures. A

similar result was also obtained by Llinas et al when they found more fines at lower

temperatures[6]. The reasoning for this is straightforward. The temperature affects the stress-

strain relationship of the polymeric material. At low temperatures, the polymer is brittle.

Hence, micro-cavities could develop within the particles due to the longer relaxation times

and over time, these cracks lead to the disintegration or external fragmentation of the particle.

This is plausibly the reason why we observe more fines at lower temperatures in our study. It

must be noted that the fragmentation behaviour differs for each catalyst/support system. It
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depends a lot on the type, mechanical strength, porosity and the catalyst loading of the

support. Hence, observations always refer to the particular catalyst system in use.

The influence of temperature on the maximum polymerization rate is as shown in Figure 3.

The well known dependency of the polymerization rate (Rp) on the monomer concentration

(Cm), concentration of the active sites (C*) and the propagation rate constant (kp) is given by

Equation 11. In a wide range, the propagation rate shows an exponential dependency on the

activation energy and the bulk temperature as shown in Equation 2.

   *CCkR mpp  (1)

RTEa
p ekkp /

0  (2)

Substituting,    */
0 CCekR m

RTEa
pp  (3)

Re-arranging and simplifying Equation 3 gives the Arrhenius plot of propagation in slurry

ethylene polymerizations (as shown in Figure 4). The activation energy for propagation (Ea)

as can be seen in Figure 4 was found to be ~ 30-40 KJ/ mol and compares well with data

reported in literature[7-11]. From a closer examination of Figure 4 it can be observed that at

temperatures greater than 80°C, there is no significant influence of temperature on the overall

activation energy.

A similar behaviour at higher temperatures has been previously reported by Pater et al[3] for

propylene polymerizations. They found that deactivation of the catalyst at higher temperatures

was the reason for this reduced increase in the reaction rate at higher temperatures. For this

study and this catalyst system (Cat1), the first signs of deactivation were observed only at

85°C. No deactivation was observed for the standard one hour experiments at other

temperatures.

1 Assumptions: (i) the polymerization rate depends directly on the monomer concentration and the active site
concentration in the bulk / slurry (ii) the growing polymer particle is assumed to be devoid of temperature or
monomer concentration gradients.
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Figure 3: Influence of Temperature on maximum polymerization rate (Rpmax) at (□) 2 bars and 
(●) 5 bars ethylene partial pressure

Figure 4: Arrhenius plot of propagation in slurry ethylene polymerizations (between 60°C
and 85°C) at (□) 2 bars and (●) 5 bars ethylene partial pressure. 
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8.4. Conclusion

The influence of temperature on the kinetics of slurry ethylene polymerization was

investigated in this study. It was observed that the reaction rate increased with increasing

temperature and the activation energy is nearly constant in the temperature and pressure range

investigated. This increase is only up to a certain temperature (80°C for this catalyst system).

At temperatures higher than this, the influence on the polymerization rate was not found to be

significant. The activation energy for propagation was found to be ~ 40 KJ/mol and compares

well with that obtained in literature. Temperature had a reverse influence on the particle size

distribution in slurry ethylene polymerizations. The normalized PSD shifted towards the right

(away from fines) with increasing temperature. This is expected, due to a combination of both

faster stress relaxation (facilitated by reduction in the local intrinsic viscosity) and a softer

polymer matrix at higher temperatures. These influences could however be drastically

different for gas phase polymerizations because of the different matrix properties.
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Chapter 9: Summary and Recommendations

9.1. Summary

The main objective of this thesis was to develop a semi-quantitative method for

characterization of fines generation in ethylene polymerization* using MgCl2- supported

Ziegler-Natta catalysts based on a detailed analysis of:

 Polymerization rate profiles

 Molecular weight

 Crystallinity

 Particle growth and particle size distribution

 Pre-polymerization and Catalyst pretreatment

and their impact on

 Internal and external fragmentation1

This was done by systematically varying the key reaction parameters that influence particle

fragmentation and kinetics in slurry ethylene homo-polymerizations (using an industrial

Ziegler-Natta catalyst on MgCl2 support), such as:

1. Ethylene pressure from 2 bars to 20 bars.

2. Co-catalyst concentration from 60mg TEA (with and without pre-contacting) to

180mg TEA.

3. Hydrogen partial pressure (at a constant ethylene pressure of 2 bars) from 2 bars to 18

bars.

4. By introducing a pre-polymerization step (using 1-hexene – no outer skin and

propylene – with outer skin) prior to main polymerization in the presence and absence

of hydrogen.

5. Temperature from 60°C to 85°C.

Polymerization rate profiles (reflecting the growth stress within a growing polymer particle),

crystallinity (an indirect measure of the brittleness of the produced polymer), particle size

distribution (gives a direct measure of the particle disintegration) and molecular weight (MW)

of the produced polymer (determines the intrinsic viscosity of the polymer matrix) were

* main focus on slurry polymerization, but gas phase polymerization effects are taken into account
1 „internal“ stands for fragmentation without fines formation, the number of particles does not change
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measured to quantify and understand the degree, extent and mechanism of particle

disintegration during polymerization.

Figure 1: GRAF-S, a semi-quantitative theory of fines generations and the various factors
influencing particle fragmentation and fines generation.

How do we quantify these interactions? Which processes contribute to particle disintegration

and under what conditions and how can they be characterised? In this work we have

developed a comprehensive semi-quantitative theory for fines generation (refer Figure 1) that

clearly illustrates the underlying processes and their influences on the properties of the

produced polymer and consequently on the final morphology of the particle during

polymerization. We shall now proceed to summarise each of the chapters individually.

“Chapter 2 – Mechanism of Fines generation”

It discusses the issues of fines in industry, the various methods that have been employed to

reduce the same and the current state of art and understanding of the mechanism of fines

generation. Our hypothesis was developed based on the state of art and conclusions obtained
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from our well designed experiments. The main factors that determine fines generation were

identified to be

o Intra-particle stress composed of two components;

 the growth stress which builds up with increasing polymerization rate

 mechanical / external stress; although it is out of the scope of this work, a method

was developed to quantify the same (refer Appendix 1)

o Brittleness of both the support (during the first seconds of polymerization) and of the

polymer particle during polymerization

o The importance of the outer polymer skin during the early stages of polymerization

o Influence of the solvent / slurryfying agent (n-hexane) on the polymer matrix

o Homogeneous polymerization on unsupported catalysts, which has not been dealt with in

this work

The most important and critical of these are the growth stress, the brittleness of the polymer

(the more crystalline the polymer the more brittle it is and hence more fragile) and the

presence of an outer polymer skin that holds the micro-grains within a growing polymer

particle together. Once the basic factors were identified, the next step was to segregate the

individual influences by recognizing key reaction parameters that control the same. They are

as listed below:

 Monomer (ethylene in this case): The monomer pressure directly correlates to the growth

stress generated within a growing polymer particle at an almost constant crystallinity,

which means, the brittleness of the polymer remains nearly unaltered with increasing

molecular weight of the produced polymer.

 Co-catalyst: The amount of co-catalyst would change the Al/Ti ratio, thus influencing the

kinetics. In addition, pre-contacting the catalyst with the co-catalyst would change the

activation state of the active sites. Both cases would lead to a faster activation profile

during polymerization, thus leading to higher growth stresses and at almost constant

crystallinity.

 Hydrogen: It is well known that hydrogen is a good chain transfer agent. Addition of

hydrogen in the reaction system decreases the molecular weight of the polymer. The

higher the hydrogen content, the lower would be the molecular weight. This would also

mean higher crystallinity of the produced polymer and hence higher brittleness of the

system thus facilitating fragmentation in the presence of a critical growth stress.
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 Importance of the Outer Polymer Skin: In the absence of an outer polymer skin, the micro-

grains of a growing polymer particle would continue to polymerize independently leading

to the production of predominantly fines. This can be done by performing a 1st step low

yield pre-polymerization using 1-hexene, followed by main ethylene homo-

polymerization. The converse would be the presence of the thick polymer ductile skin,

preventing particle fragmentation. Both these influences were clearly established in this

work.

 Temperature: Temperature influences all the parameters mentioned above. Changing the

temperature changes the following: the catalyst activation profile, the kinetics of

polymerization (and hence the growth stress), the molecular weight distribution, the

crystallinity of the produced polymer (although not to a great extent), the intrinsic

viscosity within the polymer matrix (which would influence mobility of the polymer

chains and all other transport properties of monomer / hydrogen / co-catalyst within the

polymer matrix),

According to the above understanding a complete experimental plan was designed to illustrate

each of individual influences and their combined effect on particle disintegration and fines

generation.

“Chapter 3 – Experimental”

Precise measurements of polymerization rate profiles, the characterization of the brittleness of

the growing polymer particles, and the quantification of the disintegration of the particles are

prerequisites for understanding the mechanism of fines generation.

The 1.6-L stainless steel jacketed reactor, fully automated and operating at pressures up to 40

bar and temperatures up to 120°C, was selected for slurry experiments. n-Hexane was used as

medium for the slurry. The reaction temperature and pressure were adjusted and controlled in

the both isothermal (within 0.2 C) and isobaric (within 0.15 bar) modes. A heterogeneous

Ziegler-Natta (Z-N) catalyst system, which is used in slurry-phase industrial ethylene

polymerizations, was used in all experiments. The catalyst had an average particle size of

around 10-15μm. Due to high sensitivity of the Z-N catalyst, all gases and liquids used were

of ‘polymer grade’ and were purified in a series of purification columns. The instantaneous

polymerization rate was measured by measuring the fed ethylene into the reactor via a mass

flow meter for maintaining a constant reactor pressure during the polymerization.

The polymerization kinetics was found to be reproducible with maximum deviations of ±5%.

The normalised particle size distribution was effectively used to determine the influence and
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extent of particle disintegration during polymerization. The crystallinity was effectively used

as a measure to quantify the brittleness of the produced polymer and the molecular weight

distribution (MWD) reflected the intrinsic viscosity of the polymer matrix. To study the

influence of particle disintegration especially during pre-polymerisations with 1-hexene and

propylene, SEM (Scanning Electron Microscopy) measurements were used to study the

particle morphology. The ethylene bulk concentrations in slurry at different temperatures were

obtained from PC-SAFT calculations. The hydrogen bulk concentration in slurry was

computed precisely using Aspen Polymer Plus.

“Chapter 4 – Fragmentation: Influence of Monomer Pressure”

The chapter illustrates the role of growth stress and the formation rate of the outer polymer

skin on particle disintegration during ethylene polymerizations. As per our hypothesis, we

observed the following:

 By changing the monomer pressure the polymerization rate increased almost linearly

(especially at higher pressures) thus implying higher growth stress at higher ethylene

pressures without changing the crystallinity (~46%) and hence the brittleness of the

produced polymer. As expected the molecular weight of the produced polymer increased

with increasing monomer pressure.

 At low ethylene pressures the outer polymer skin is not thick enough to withstand the

growth stress and hold the micro-particles together, thus displaying a decrease in particle

size.

 For this catalyst system, it was found that 8 bars ethylene pressure seemed to be the

critical limit (under these conditions), where the polymer and the catalyst support along

with the outer skin, are able to counter balance the internal growth stresses due to

polymerization thus exhibiting a PSD shifting away from fines.

 Above this critical pressure, the internal growth stress due to polymerization is much

higher that critical strength of the outer skin thus leading to particle disintegration. This

disintegration leads to further increase in the polymerisation rate, due to the increased

exposure of active sites to the monomer as explained in detail in Chapter 2 of this thesis.

 Incomplete fragmentation at low pressures could be the reason for the observed broken

dependency of the polymerization rate on the bulk monomer concentration.
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“Chapter 5 – Fragmentation: Influence of co-catalyst”

This chapter discusses the influence of catalyst pre-contacting (with co-catalyst) and co-

catalyst concentration on the kinetics of polymerization and particle disintegration.

Case 1: Pre-contacting catalyst

 Pre-activation of the catalyst leads to higher initial polymerization rate and also

significantly reduced the initial activation period for this catalyst.

 The higher initial polymerization rate implies high growth stress during the early stages of

polymerization thus leading to particle disintegration (at the same crystallinity / brittleness

of the polymer). The percentage undersize almost doubled for the same normalized

particle diameter (for example, the % undersize at a normalized particle diameter of 10μm

without pre-contacting was 35% and the same was 70% when catalyst pre-activation was

performed).

 The maximum polymerization rate with and without pre-contacting remained the same in

both experiments.

Case 2: Influence of co-catalyst concentration

 In-situ activation of the catalyst always displays a slower activation profile than pre-

activated catalyst. This means a gradual build up of the stresses due to slower reaction

kinetics primarily due to slower diffusion of the TEA into the growing polymer particle.

However, the polymerization rate and consequently the stress buildup within the particle,

is also higher at higher co-catalyst concentrations.

 At high TEA concentrations it was observed that there is a greater stress on the outer skin

due to the counterbalance of the TEA/activation front and the expanding polymer /

reaction front leading to a greater production of polymer in the outer shell of the

macroparticle vis-à-vis the inner core, thus leading to rupture of the outer shell and hence

fines generation

“Chapter 6 – Fragmentation: Influence of hydrogen”

The influence of hydrogen partial pressure on the kinetics and particle disintegration,

especially internal fragmentation in slurry ethylene polymerizations was comprehensively
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examined in this study. Introduction of hydrogen not only alters the chemistry but also the

physics during polymerization.

 Addition of hydrogen leads to the production of a polymer with lower MW (as is well

known).

 Lower MW implies, shorter chain lengths, with lower local micro-viscosity, consequently

facilitating higher chain mobility and faster crystallisation kinetics.

 This in turn leads to the higher crystallinity of the polymer and consequently the higher

brittleness of the polymer, which in the presence of a critical growth stress leads to

particle disintegration.

 The particle disintegration in turn leads to the higher observed polymerisation rate as

explained in detail in our theory in Chapter 2.

 Particle disintegration could occur internally within a particle, with the outer skin holding

the fragmented grains up to a certain crystallinity (< 76%). The importance of the outer

polymer skin in the presence of hydrogen is more clearly established in Chapter 7, with

the so-called “1-Hexene” effect.

 The above observations clearly imply that polymerization kinetics cannot be interpreted

correctly without considering the physical influences, i.e. particle disintegration, that is

occurring simultaneously during the polymerization reaction. A higher polymerization rate

is not always due to a chemical effect.

“Chapter 7 – Influence of pre-polymerization: the counterbalance of fragmentation and

agglomeration”

In this chapter, the influence of a low / ultra low yield pre-polymerization step with an alfa-

olefin (1-hexene and propylene), prior to main homo-polymerization was investigated. The

alfa-olefins being more bulky should show a different fragmentation behaviour, crack

propagation and skin formation. The high solubility of polyhexene in alkanes (n-hexane in

this case) implies no skin formation. Four cases were studied in this investigation.
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Case1: Influence of 1-hexene pre-polymerization with different yields

 1-hexene pre-polymerization led to complete disintegration of the particle after main

homo-polymerization at 5 bars C2. This was clearly observed in the PSD as well as in

SEM.

 This was clearly due to the absence of an outer polymer skin during main polymerization

(as PH is extremely soluble in n-hexane), as well as the high initial growth stresses during

early polymerization (high polymerization rate).

 The particle morphology of the homo-polymer with 1-hexene pre-polymerization is

distinctly different (no fibrous interconnections, holding the macro-particles together).

Case2: Influence of 1-hexene pre-polymerization time

 When the pre-polymerization time was long ~ 90 minutes, it was observed that the PSD

shifted completely to agglomerates.

 Agglomeration is predominantly due to a higher surface concentration of sticky

polyhexene, which bonds the disintegrated macro-particles together like an adhesive.

 At higher PH yields, the slower diffusion causes a higher stress at the shell of bigger

macro-particles thus leading to fracture / disintegration. These smaller disintegrated

particles, stick to other particles, thus forming agglomerates. This effect was also clearly

visible with the top end of the particle size distribution shifting towards agglomerates even

at short pre-polymerization times.

 An important learning from this experiment was the PSD alone cannot be used to quantify

or interpret particle agglomeration / disintegration.

Case3: Influence of 1-hexene pre-polymerization in the presence of hydrogen

 The importance of the outer polymer skin is clearly established in the experiments

performed in this investigation especially in the presence of hydrogen.

 These set of experiments comprehensively establish the presence of internal fragmentation

observed at 10 bars hydrogen in Chapter 6. The absence of the outer skin lead to a further

increase in the polymerization rate, as well as an increase in the crystallinity of the
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polymer formed. This obviously led to complete disintegration of the particle leading to

the production of mostly fines.

Case4: Influence of propylene pre-polymerization

 Pre-polymerization with propylene led at ultra-low to low yields led to significant increase

in the polymerization rate, during main ethylene homo-polymerization.

 However, this was clearly due to a chemical influence (reported previously in literature),

as no difference could be observed either in the PSD or in the particle morphology (SEM

images).

 The thick polypropylene skin holds the growing macro-particles together, thus preventing

particle fragmentation despite the high polymerization rate (read growth stress).

 The stickiness of polypropylene also leads to agglomeration, although not as much as

polyhexene. This could clearly be observed from the upper end of the PSD.

“Chapter 8 – Influence of Temperature”

Changing the temperature, has a deep influence on the reaction kinetics, molecular weight

distribution, micro-viscosity, the crystallinity of the produced polymer, material and transport

properties within the polymer matrix and also the visco-elastic behaviour of the polymer

particle. With increasing temperature the following was observed:

 The reaction rate increases with rising temperature, demonstrating the Arrhenius-type

temperature dependency over the whole temperature range and displaying an almost

constant activation energy of 40KJ/mol for the temperature and pressure ranges

investigated in this study.

 This increase in the polymerization rate was only up to a certain temperature (80°C), after

which it was relatively constant.

 Temperature had an inverse influence on the PSD with the PSD shifting away from fines

with increasing temperature. A 30% reduction in fines was observed at 85°C as compared

to that at 60°C (for d normalised = 10μm). This shift in the normalised PSD is due to a

combination of both faster stress relaxation (facilitated by reduction in the local intrinsic

viscosity) and a softer polymer matrix at higher temperatures.
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 The higher the temperature, the lower the molecular weight follows the well-known rule:

transfer reactions increase more rapidly than propagation due to their higher activation

energy.

 The lower molecular weight, and the higher chain mobility (due to reduced micro-

viscosity) leads to a higher crystallinity of the produced polymer, however, the change in

the crystallinity (<10%) is not in the critical range (75%) in order to have any impact on

particle disintegration.

9.2. Recommendations

A considerable amount of work has been done in our group in the last 4 years with the

GRAF[1] and the GRAF-S (this work) theories that have been simultaneously developed, for

particle disintegration in ethylene polymerizations using completely different (gas phase

catalyst vis-à-vis slurry catalyst) Ziegler-Natta catalysts. The GRAF-S theory (Growth Rate

Accelerated Fragmentation – taking into account the role of the outer polymer Skin)

contributes deeply to a more complete understanding of different mechanisms in play, taking

into account many influences (individual and combined) and the key influence of the role of

the outer polymer skin, during polymerization. This understanding could lay foundation for

future research work in the field of polyolefins, such as:

 Extension of the theory for ethylene co-polymerizations, which would be interesting as

the presence of a co-polymer completely changes the inherent properties of the final

polymer.

 Studying particle disintegration using catalysts on other supports (SiO2, for instance)

which should exhibit completely different fragmentation behaviour.

 During the first seconds of polymerization there is a complete phase transition from a ~

95% MgCl2 system to one with > 99% polymer. The mixing rules of the polymer and

MgCl2 during this phase transition are not clearly understood. This understanding would

enable one to develop a global Brittleness Model taking into account the brittleness of the

support, the polymer and the outer polymer skin. The kinetics of in-situ crystallization

would also greatly help in obtaining a deeper understanding of the mechanisms in play,

taking into account the influence of MW and PDI.
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 Investigations on understanding the kinetics of activation and co-catalyst back diffusion

and activation of “new site” would also be worthwhile and contribute to the growing

knowledge.

 Comparison of slurry and gas phase ethylene polymerization using a gas phase catalyst

has been simultaneously developed in our group[1] during the same time as this work.

However, some of the influences like for instance, a low yield pre-polymerization step

prior, to main homo-polymerization could be performed to understand the effects better.

 The development of a comprehensive mathematical model for particle fragmentation,

taking into account changes in monomer pressure, hydrogen concentration, monomer/H2

ratio, temperature and their influences on the polymerization rate (internal growth stress),

the crystallinity (brittleness of the polymer), the MWD, sorption, transport and visco-

elastic properties in both slurry and gas phase.

Other interesting experiments that could be performed to add more to our understanding

would be:

 To check the influence of high co-catalyst concentrations at high ethylene pressures.

Would the relatively slower diffusion of the co-catalyst and the faster production of

polymer in the outer shell lead to rupture of the polymer layer by layer from the outside?

 An interesting experiment would be to pre-contact the catalyst with the co-catalyst for a

short time, followed by washing of the catalyst completely to remove any free co-catalyst

prior to injection into differently scavenged reaction masses. Would we have the same

maximum polymerization rate? Would we notice a lower polymerization rate due to

starvation of potential active sites / new sites from the co-catalyst, during main

polymerization?

 A 1-hexene pre-polymerization step in the presence of hydrogen. Would it lead to a

production of low molecular weight poly-hexene which can diffuse out faster, thus

preventing unbalanced stress development in the shell of the particle during main

polymerization, thus preventing fragmentation?

 Multistage polymerizations could also be helpful in tailoring pre-polymer / polymer

properties.
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 The influence of pre-treating the catalyst, with say hydrogen, or other fillers would also be

interesting to study.

Reference List

1. Daftaribesheli, M. Comparison of Catalytic Ethylene Polymerization in Slurry and Gas
Phase. 11-6-2009. PhD Thesis, Universitiet Twente.



108 Single particle testing method

Appendix -1 – Testing method for single particle shooting & breakage, simulating

conditions of transfer between reactors / flashing

Figure 1: Experimental set-up for single polymer particle shooting

Figure 2: Results of single particle (HDPE ~ 2mm) shooting as observed using a high-speed
camera. Minimum particle velocity required to break this PE sample particle was > 47 m/s.

A method was developed where a single PE particle of mass ‘m’, diameter ‘d’ was accelerated

to a velocity ‘u’ m/s, using compressed air and allowed to impinge on a hard surface -

Stainless Steel (refer Figure 1). The particle velocity is reduced from ‘u' m/s to zero, when it

impinges against the surface. The energy of the particle can be calculated and it was observed

that a given (high-crystalline) particle begins to break at a velocity of 50 m/s. Such velocities

in processes are encountered during transfer of polymer between rectors, in cyclones, during

flashing in some processes, etc. The method can be used to estimate the averaged brittleness
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in terms of the fracture energy. This has been clearly illustrated in Figure 2, which shows the

fragmenting of a PE particle at a velocity of 50 m/s.

Such velocities in processes are encountered during transfer of polymer between reactors, in

cyclones, during flashing in some processes, etc. The method can be used to estimate the

averaged brittleness in terms of the fracture energy (Figure 3).

Figure 3: Kinetic Energy calculations for a typical spherical PE particle of 2mm diameter.
The calculations for 1mm, 3mm & 4mm are theoretical calculations. The cross wire, defines
the energy required to break the particle calculated from experiments.

Kinetic Energy (J) vs Particle Velocity(m/s)
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Appendix 2 – Local particle overheating in olefin polymerizations

Work Observation / Remarks Citation
First model to explain local
particle overheating and its
influence on particle growth
and morphology

Particle agglomeration - related to
mass and heat transfer limitations
which occurred during the growth
of the polymer particle.

Floyd et al[1,2]

Single particle stability
analysis

Model to establish conditions
under which a growing polymer
particle overheats

Hutchinson et al[3]

Using existing heat and mass
transfer models to predict
particle growth in modern
industrial catalysts

It was not possible to use existing
models ''as-is'' to model highly
active catalysts, (≥ 50kg gcat-1 h-1)
as they predicted prohibitively
large concentration gradients inside
the growing particles during slurry
polymerizations, and temperature
gradients outside the particles
during polymerization in the gas
phase.

Mckenna et al[4]

Computational f1uid
dynamics to study the heat
transfer from catalyst to
polymer particles during
ethylene polymerization in a
gas phase reactor

The importance of conductive heat
transfer, particle–particle and
particle–wall interactions was
raised.

Mckenna et al[5,6]

Particle-overheating in olefin
polymerizations

Modeled and studied particle-
overheating phenomena for an
entire population of particles for
different residence times and
catalyst particle size distributions.

Zacca et al[7]

Influence of catalyst particle
size on overheating for gas
phase polymerizations using
computation fluid dynamics

The larger the initial catalyst
particle size, the higher the
temperatures inside the particle.
Further it was shown that particle
interactions play a large role in the
heat transfer, due to which both
convection and conduction are
important

Eriksson et al[8]
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Work Observation / Remarks Citation
Morphogenesis model and
Viscoelastic model

Discussed the influence of local
particle overheating and
temperature on the visco-elastic
properties as well as the stress (and
relaxation time) for a growing
polymer particle

Grof et al[9],
Kittilsen et al[10]

Partial melting of polymer
occurred at high temperatures
in gas phase polymerizations

This partial melting lead to a
diffusion limitation which was
found to be partially responsible
for an observed decrease in the
polymerization rate at elevated
temperatures (>99°C).

HanAdebekun et
al[11]

Optical and infrared imaging
of growing polyolefin
particles

The local particle surface
temperature rise could be as high as
20K-30K depending on the
reaction rate and particle size

Pater et al[12],
Banat et al[13]

Polymerization at higher
temperatures

Reduction in fines at higher
temperatures during both pre-
polymerization and polymerization
due to a softer polymer matrix

Banat et al[13],
Llinas et al[14]
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